为了账号安全,请及时绑定邮箱和手机立即绑定

Spark-Core源码精读(10)、注册Application及Executors的启动注册流程(二)

2018.12.09 19:11 867浏览

承接上一篇文章,我们继续来分析Executor的启动过程,本文主要分为两部分:

  • 向worker发送启动Executor的消息

  • 启动完成后向driver发送ExecutorAdded的消息,这里的driver就是ClientEndpoint

private def launchExecutor(worker: WorkerInfo, exec: ExecutorDesc): Unit = {
  logInfo("Launching executor " + exec.fullId + " on worker " + worker.id)
  worker.addExecutor(exec)
  worker.endpoint.send(LaunchExecutor(masterUrl,
    exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory))
  exec.application.driver.send(    ExecutorAdded(exec.id, worker.id, worker.hostPort, exec.cores, exec.memory))
}

启动Executor

首先我们分析Worker在接收到LaunchExecutor消息之后所执行的操作:

case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>  // 首先判断Master是否为Active状态
  if (masterUrl != activeMasterUrl) {
    logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.")
  } else {    try {
      logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))      // 创建executor的工作目录
      // Create the executor's working directory
      val executorDir = new File(workDir, appId + "/" + execId)      if (!executorDir.mkdirs()) {        throw new IOException("Failed to create directory " + executorDir)
      }      // Create local dirs for the executor. These are passed to the executor via the
      // SPARK_EXECUTOR_DIRS environment variable, and deleted by the Worker when the
      // application finishes.
      根据application创建executor的本地目录,可以通过SPARK_EXECUTOR_DIRS进行配置      val appLocalDirs = appDirectories.get(appId).getOrElse {        Utils.getOrCreateLocalRootDirs(conf).map { dir =>          val appDir = Utils.createDirectory(dir, namePrefix = "executor")          Utils.chmod700(appDir)
          appDir.getAbsolutePath()
        }.toSeq
      }
      appDirectories(appId) = appLocalDirs      // 实例化ExecutorRunner
      val manager = new ExecutorRunner(
        appId,
        execId,
        appDesc.copy(command = Worker.maybeUpdateSSLSettings(appDesc.command, conf)),
        cores_,
        memory_,
        self,
        workerId,
        host,
        webUi.boundPort,
        publicAddress,
        sparkHome,
        executorDir,
        workerUri,
        conf,
        appLocalDirs, ExecutorState.RUNNING)      // 保存在executors中
      executors(appId + "/" + execId) = manager      // 执行ExecutorRunner的start方法
      manager.start()      // 修改计算资源的使用情况
      coresUsed += cores_
      memoryUsed += memory_      // 向Master发送ExecutorStateChanged的消息
      sendToMaster(ExecutorStateChanged(appId, execId, manager.state, None, None))
    } catch {      case e: Exception => {
        logError(s"Failed to launch executor $appId/$execId for ${appDesc.name}.", e)        if (executors.contains(appId + "/" + execId)) {
          executors(appId + "/" + execId).kill()
          executors -= appId + "/" + execId
        }
        sendToMaster(ExecutorStateChanged(appId, execId, ExecutorState.FAILED,          Some(e.toString), None))
      }
    }
  }

首先实例化ExecutorRunner,ExecutorRunner就是Standalone模式下用来管理一个executor进程的执行的。然后调用ExecutorRunner的start()方法:

private[worker] def start() {
  workerThread = new Thread("ExecutorRunner for " + fullId) {    override def run() { fetchAndRunExecutor() }
  }
  workerThread.start()  // Shutdown hook that kills actors on shutdown.
  shutdownHook = ShutdownHookManager.addShutdownHook { () =>    // It's possible that we arrive here before calling `fetchAndRunExecutor`, then `state` will
    // be `ExecutorState.RUNNING`. In this case, we should set `state` to `FAILED`.
    if (state == ExecutorState.RUNNING) {
      state = ExecutorState.FAILED
    }
    killProcess(Some("Worker shutting down")) }
}

可以看见内部创建了一条线程用来执行fetchAndRunExecutor方法,当调用线程的start方法时,线程中的run方法运行,即fetchAndRunExecutor()方法开始执行:

private def fetchAndRunExecutor() {  try {    // Launch the process
    // 首先构建command
    val builder = CommandUtils.buildProcessBuilder(appDesc.command, new SecurityManager(conf),
      memory, sparkHome.getAbsolutePath, substituteVariables)    val command = builder.command()    val formattedCommand = command.asScala.mkString("\"", "\" \"", "\"")
    logInfo(s"Launch command: $formattedCommand")    // 设置Executor的本地目录并设置一些配置参数
    builder.directory(executorDir)
    builder.environment.put("SPARK_EXECUTOR_DIRS", appLocalDirs.mkString(File.pathSeparator))    // In case we are running this from within the Spark Shell, avoid creating a "scala"
    // parent process for the executor command
    builder.environment.put("SPARK_LAUNCH_WITH_SCALA", "0")    // Add webUI log urls
    val baseUrl =      s"http://$publicAddress:$webUiPort/logPage/?appId=$appId&executorId=$execId&logType="
    builder.environment.put("SPARK_LOG_URL_STDERR", s"${baseUrl}stderr")
    builder.environment.put("SPARK_LOG_URL_STDOUT", s"${baseUrl}stdout")    // 开启一个新的进程运行command
    process = builder.start()    val header = "Spark Executor Command: %s\n%s\n\n".format(
      formattedCommand, "=" * 40)    // Redirect its stdout and stderr to files
    val stdout = new File(executorDir, "stdout")
    stdoutAppender = FileAppender(process.getInputStream, stdout, conf)    val stderr = new File(executorDir, "stderr")    Files.write(header, stderr, UTF_8)
    stderrAppender = FileAppender(process.getErrorStream, stderr, conf)    // Wait for it to exit; executor may exit with code 0 (when driver instructs it to shutdown)
    // or with nonzero exit code
    val exitCode = process.waitFor()
    state = ExecutorState.EXITED
    val message = "Command exited with code " + exitCode
    worker.send(ExecutorStateChanged(appId, execId, state, Some(message), Some(exitCode)))
  } catch {    case interrupted: InterruptedException => {
      logInfo("Runner thread for executor " + fullId + " interrupted")
      state = ExecutorState.KILLED
      killProcess(None)
    }    case e: Exception => {
      logError("Error running executor", e)
      state = ExecutorState.FAILED
      killProcess(Some(e.toString))
    }
  }
}

这里最重要的就是process = builder.start(),即开启一个新的线程来运行我们构建的command,也就是说开辟一个新的进程(JVM)来运行"org.apache.spark.executor.CoarseGrainedExecutorBackend"这个类的main方法,还记得这是在哪里设置的吗,没错,就是SparkDeploySchedulerBackend的start()方法中,所以我们现在进入CoarseGrainedExecutorBackend这个类的main方法:

def main(args: Array[String]) {  var driverUrl: String = null
  var executorId: String = null
  var hostname: String = null
  var cores: Int = 0
  var appId: String = null
  var workerUrl: Option[String] = None
  val userClassPath = new mutable.ListBuffer[URL]()  var argv = args.toList  // 这里就是通过我们构建command的时候传入的参数对变量进行初始化操作
  while (!argv.isEmpty) {
    argv match {      case ("--driver-url") :: value :: tail =>
        driverUrl = value
        argv = tail      case ("--executor-id") :: value :: tail =>
        executorId = value
        argv = tail      case ("--hostname") :: value :: tail =>
        hostname = value
        argv = tail      case ("--cores") :: value :: tail =>
        cores = value.toInt
        argv = tail      case ("--app-id") :: value :: tail =>
        appId = value
        argv = tail      case ("--worker-url") :: value :: tail =>        // Worker url is used in spark standalone mode to enforce fate-sharing with worker
        workerUrl = Some(value)
        argv = tail      case ("--user-class-path") :: value :: tail =>
        userClassPath += new URL(value)
        argv = tail      case Nil =>      case tail =>        // scalastyle:off println
        System.err.println(s"Unrecognized options: ${tail.mkString(" ")}")        // scalastyle:on println
        printUsageAndExit()
    }
  }  if (driverUrl == null || executorId == null || hostname == null || cores <= 0 ||
    appId == null) {
    printUsageAndExit()
  }  // 如果传入的参数没有问题就执行run方法
  run(driverUrl, executorId, hostname, cores, appId, workerUrl, userClassPath)
}

这里要先说明一下,CoarseGrainedExecutorBackend实际上实现的是ExecutorBackend,而ExecutorBackend根据集群的运行模式不同有三种不同的实现,分别是CoarseGrainedExecutorBackend、LocalBackend、MesosExecutorBackend,而这里的CoarseGrainedExecutorBackend就是Standalone模式下的具体实现,而Standalone模式下是通过ExecutorRunner来启动一个进程运行CoarseGrainedExecutorBackend的main方法的。

接下来就是调用run方法:

private def run(
    driverUrl: String,
    executorId: String,
    hostname: String,
    cores: Int,
    appId: String,
    workerUrl: Option[String],
    userClassPath: Seq[URL]) {  SignalLogger.register(log)  SparkHadoopUtil.get.runAsSparkUser { () =>    // Debug code
    Utils.checkHost(hostname)    // Bootstrap to fetch the driver's Spark properties.
    val executorConf = new SparkConf
    val port = executorConf.getInt("spark.executor.port", 0)    val fetcher = RpcEnv.create(      "driverPropsFetcher",
      hostname,
      port,
      executorConf,      new SecurityManager(executorConf),
      clientMode = true)    val driver = fetcher.setupEndpointRefByURI(driverUrl)    val props = driver.askWithRetry[Seq[(String, String)]](RetrieveSparkProps) ++      Seq[(String, String)](("spark.app.id", appId))
    fetcher.shutdown()    // Create SparkEnv using properties we fetched from the driver.
    val driverConf = new SparkConf()    for ((key, value) <- props) {      // this is required for SSL in standalone mode
      if (SparkConf.isExecutorStartupConf(key)) {
        driverConf.setIfMissing(key, value)
      } else {
        driverConf.set(key, value)
      }
    }    if (driverConf.contains("spark.yarn.credentials.file")) {
      logInfo("Will periodically update credentials from: " +
        driverConf.get("spark.yarn.credentials.file"))      SparkHadoopUtil.get.startExecutorDelegationTokenRenewer(driverConf)
    }    val env = SparkEnv.createExecutorEnv(
      driverConf, executorId, hostname, port, cores, isLocal = false)    // SparkEnv will set spark.executor.port if the rpc env is listening for incoming
    // connections (e.g., if it's using akka). Otherwise, the executor is running in
    // client mode only, and does not accept incoming connections.
    val sparkHostPort = env.conf.getOption("spark.executor.port").map { port =>
        hostname + ":" + port
      }.orNull
    env.rpcEnv.setupEndpoint("Executor", new CoarseGrainedExecutorBackend(
      env.rpcEnv, driverUrl, executorId, sparkHostPort, cores, userClassPath, env))
    workerUrl.foreach { url =>
      env.rpcEnv.setupEndpoint("WorkerWatcher", new WorkerWatcher(env.rpcEnv, url))
    }
    env.rpcEnv.awaitTermination()    SparkHadoopUtil.get.stopExecutorDelegationTokenRenewer()
  }
}

上面的源码主要分为部分:

  • 从Driver上获得Spark的一些属性信息

  • 使用得到的信息创建ExecutorEnv即Executor的运行时环境

  • 然后实例化CoarseGrainedExecutorBackend并向RpcEnv进行注册

  • 注册时会调用CoarseGrainedExecutorBackend的onStart方法

WorkerWatcher部分此处我们不做分析,我们看CoarseGrainedExecutorBackend的onStart方法:

override def onStart() {
  logInfo("Connecting to driver: " + driverUrl)
  rpcEnv.asyncSetupEndpointRefByURI(driverUrl).flatMap { ref =>    // This is a very fast action so we can use "ThreadUtils.sameThread"
    driver = Some(ref)    // 向Driver发送RegisterExecutor消息
    ref.ask[RegisterExecutorResponse](      RegisterExecutor(executorId, self, hostPort, cores, extractLogUrls))
  }(ThreadUtils.sameThread).onComplete {    // This is a very fast action so we can use "ThreadUtils.sameThread"
    case Success(msg) => Utils.tryLogNonFatalError {      Option(self).foreach(_.send(msg)) // msg must be RegisterExecutorResponse
    }    case Failure(e) => {
      logError(s"Cannot register with driver: $driverUrl", e)      System.exit(1)
    }
  }(ThreadUtils.sameThread)
}

这里我们需要关心的是这个driver到底是谁,即driverUrl到底是什么?

那么我们追踪一下:driverUrl是实例化CoarseGrainedExecutorBackend的时候传入的,而执行实例化时候的这个driverUrl又是通过run方法传入的,而run方法中的driverUrl又是main方法执行的时候传入的,main方法的driverUrl是根据传入的参数获得的,即创建新进程时传入的参数,即执行的command,而command是通过appDesc的command构建的,而appDesc是在SparkDeploySchedulerBackend中的start方法中构建的,如下所示:

// The endpoint for executors to talk to usval driverUrl = rpcEnv.uriOf(SparkEnv.driverActorSystemName,  RpcAddress(sc.conf.get("spark.driver.host"), sc.conf.get("spark.driver.port").toInt),  CoarseGrainedSchedulerBackend.ENDPOINT_NAME)val args = Seq(  "--driver-url", driverUrl,  "--executor-id", "{{EXECUTOR_ID}}",  "--hostname", "{{HOSTNAME}}",  "--cores", "{{CORES}}",  "--app-id", "{{APP_ID}}",  "--worker-url", "{{WORKER_URL}}")

这里的CoarseGrainedSchedulerBackend.ENDPOINT_NAME是"CoarseGrainedScheduler":

private[spark] object CoarseGrainedSchedulerBackend {  val ENDPOINT_NAME = "CoarseGrainedScheduler"}

而DriverEndpoint注册的时候就是使用的ENDPOINT_NAME

driverEndpoint = rpcEnv.setupEndpoint(ENDPOINT_NAME, createDriverEndpoint(properties))

所以这里的driverUrl指的就是DriverEndpoint,DriverEndpoint在接收到RegisterExecutor消息后执行的操作为:

case RegisterExecutor(executorId, executorRef, hostPort, cores, logUrls) =>  if (executorDataMap.contains(executorId)) {
    context.reply(RegisterExecutorFailed("Duplicate executor ID: " + executorId))
  } else {    // If the executor's rpc env is not listening for incoming connections, `hostPort`
    // will be null, and the client connection should be used to contact the executor.
    val executorAddress = if (executorRef.address != null) {
        executorRef.address
      } else {
        context.senderAddress
      }
    logInfo(s"Registered executor $executorRef ($executorAddress) with ID $executorId")
    addressToExecutorId(executorAddress) = executorId
    totalCoreCount.addAndGet(cores)
    totalRegisteredExecutors.addAndGet(1)    val data = new ExecutorData(executorRef, executorRef.address, executorAddress.host,
      cores, cores, logUrls)    // This must be synchronized because variables mutated
    // in this block are read when requesting executors
    CoarseGrainedSchedulerBackend.this.synchronized {
      executorDataMap.put(executorId, data)      if (numPendingExecutors > 0) {
        numPendingExecutors -= 1
        logDebug(s"Decremented number of pending executors ($numPendingExecutors left)")
      }
    }    // Note: some tests expect the reply to come after we put the executor in the map
    context.reply(RegisteredExecutor(executorAddress.host))
    listenerBus.post(      SparkListenerExecutorAdded(System.currentTimeMillis(), executorId, data))
    makeOffers()
  }

如果一切正常DriverEndpoint会向CoarseGrainedExecutorBackend回复消息RegisteredExecutor,CoarseGrainedExecutorBackend接收到消息后实例化了Executor,具体的实例化过程中比较重要的两个部分就是初始化运行tasks的线程池和向driver发送心跳信息,部分源码如下:

...// 开启线程池,用来运行提交的tasks// Start worker thread poolprivate val threadPool = ThreadUtils.newDaemonCachedThreadPool("Executor task launch worker")private val executorSource = new ExecutorSource(threadPool, executorId)
...// 可以看到是开辟了一个线程来发送心跳// Executor for the heartbeat task.private val heartbeater = ThreadUtils.newDaemonSingleThreadScheduledExecutor("driver-heartbeater")// 使用driver中的HeartbeatReceiver来接收心跳,实际上HeartbeatReceiver是SparkContext实例化的时候创建的// must be initialized before running startDriverHeartbeat()private val heartbeatReceiverRef =  RpcUtils.makeDriverRef(HeartbeatReceiver.ENDPOINT_NAME, conf, env.rpcEnv)/**
 * When an executor is unable to send heartbeats to the driver more than `HEARTBEAT_MAX_FAILURES`
 * times, it should kill itself. The default value is 60. It means we will retry to send
 * heartbeats about 10 minutes because the heartbeat interval is 10s.
 */// 上面的注释说的很清楚了,最大的失败次数是60次,每隔10s重试一次,也就是说可以重试10分钟private val HEARTBEAT_MAX_FAILURES = conf.getInt("spark.executor.heartbeat.maxFailures", 60)/**
 * Count the failure times of heartbeat. It should only be acessed in the heartbeat thread. Each
 * successful heartbeat will reset it to 0.
 */private var heartbeatFailures = 0// 开始发送心跳startDriverHeartbeater()

具体startDriverHeartbeater()方法的实现这里就不追踪下去了,同时本文上述源码中出现的向Master、Worker、Driver回复消息的部分也不进行说明,大家可以自行阅读,其实原理都是一样的,就跟我们平时工作一样,如果公司来了一个新同事,当他准备完成认为可以工作了,就要向领导汇报,领导接收到汇报之后就会为其分配具体的工作任务。

附上一副图,方便大家理解(注意该图只是画了主要流程,为了便于观看,Rpc通信的部分只是简单的画成了“A发送消息给B”的形式,特此说明)

webp

向driver发消息

下面是向driver发送消息的部分,注意这里的driver指的是ClientEndpoint

exec.application.driver.send(  ExecutorAdded(exec.id, worker.id, worker.hostPort, exec.cores, exec.memory))
}

ClientEndpoint接收到消息后执行的操作:

case ExecutorAdded(id: Int, workerId: String, hostPort: String, cores: Int, memory: Int) =>  val fullId = appId + "/" + id
  logInfo("Executor added: %s on %s (%s) with %d cores".format(fullId, workerId, hostPort,
    cores))
  listener.executorAdded(fullId, workerId, hostPort, cores, memory)

这里主要就是日志相关的工作了,不再阐述。

至此Application的注册和Executor的启动注册大致的流程我们就走完了,接下来就是task的提交和运行的部分了。

本文参照的是Spark 1.6.3版本的源码,同时给出Spark 2.1.0版本的连接:

Spark 1.6.3 源码

Spark 2.1.0 源码

本文为原创,欢迎转载,转载请注明出处、作者,谢谢!



作者:sun4lower
链接:https://www.jianshu.com/p/16d84f5d5595


点击查看更多内容
0人点赞

若觉得本文不错,就分享一下吧!

评论

相关文章推荐

正在加载中
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消