为了账号安全,请及时绑定邮箱和手机立即绑定

[spark streaming] 状态管理 updateStateByKey&mapWithState

2018.12.14 13:42 606浏览

前言

SparkStreaming 7*24 小时不间断的运行,有时需要管理一些状态,比如wordCount,每个batch的数据不是独立的而是需要累加的,这时就需要sparkStreaming来维护一些状态,目前有两种方案updateStateByKey&mapWithState,mapWithState是spark1.6新加入的保存状态的方案,官方声称有10倍性能提升。

updateStateByKey

先上一个示例:

def updateFunction(currValues:Seq[Int],preValue:Option[Int]): Option[Int] = {
       val currValueSum = currValues.sum        //上面的Int类型都可以用对象类型替换
        Some(currValueSum + preValue.getOrElse(0)) //当前值的和加上历史值
    }
    kafkaStream.map(r => (r._2,1)).updateStateByKey(updateFunction _)

这里的updateFunction方法就是需要我们自己去实现的状态跟新的逻辑,currValues就是当前批次的所有值,preValue是历史维护的状态,updateStateByKey返回的是包含历史所有状态信息的DStream,下面我们来看底层是怎么实现状态的管理的,通过跟踪源码看到最核心的实现方法:

  private [this] def computeUsingPreviousRDD(
      batchTime: Time,
      parentRDD: RDD[(K, V)],
      prevStateRDD: RDD[(K, S)]) = {    // Define the function for the mapPartition operation on cogrouped RDD;
    // first map the cogrouped tuple to tuples of required type,
    // and then apply the update function
    val updateFuncLocal = updateFunc
    val finalFunc = (iterator: Iterator[(K, (Iterable[V], Iterable[S]))]) => {
      val i = iterator.map { t =>
        val itr = t._2._2.iterator
        val headOption = if (itr.hasNext) Some(itr.next()) else None
        (t._1, t._2._1.toSeq, headOption)
      }
      updateFuncLocal(batchTime, i)
    }
    val cogroupedRDD = parentRDD.cogroup(prevStateRDD, partitioner)
    val stateRDD = cogroupedRDD.mapPartitions(finalFunc, preservePartitioning)
    Some(stateRDD)
  }

可以看到是将parentRDDpreStateRDD进行co-group,然后将finalFunc方法作用于每个Partition,看到finalFunc方法的实现里面(t._1, t._2._1.toSeq, headOption)这样的形式,(key,currValues,preValue)这不就是和我们需要自己实现的updateFun类似的结构吗,是的没错,我们的方法已经被包装了一次:

def updateStateByKey[S: ClassTag](
      updateFunc: (Seq[V], Option[S]) => Option[S],      partitioner: Partitioner
    ): DStream[(K, S)] = ssc.withScope {
    val cleanedUpdateF = sparkContext.clean(updateFunc)
    val newUpdateFunc = (iterator: Iterator[(K, Seq[V], Option[S])]) => {
      iterator.flatMap(t => cleanedUpdateF(t._2, t._3).map(s => (t._1, s)))
    }
    updateStateByKey(newUpdateFunc, partitioner, true)
  }

可以知道每次调用updateStateByKey都会将旧的状态RDD和当前batch的RDD进行co-group来得到一个新的状态RDD,即使真正需要跟新的数据只有1条也需要将两个RDD进行cogroup,所有的数据都会被计算一遍,而且随着状态的不断增加,运行速度会越来越慢。

为了解决这一问题,mapWithState应运而生。

mapWithState

先来个示例:

   val initialRDD = ssc.sparkContext.parallelize(List[(String, Int)]())    //自定义mappingFunction,累加单词出现的次数并更新状态
    val mappingFunc = (word: String, count: Option[Int], state: State[Int]) => {
      val sum = count.getOrElse(0) + state.getOption.getOrElse(0)
      val output = (word, sum)
      state.update(sum)
      output
    }    //调用mapWithState进行管理流数据的状态
    kafkaStream.map(r => (r._2,1)).mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD)).print()

这里的initialRDD就是初始化状态,updateStateByKey也有对应的API。这里的mappingFun也是需要我们自己实现的状态跟新逻辑,调用state.update()就是对状态的跟新,output就是通过mapWithState后返回的DStream中的数据形式。注意这里不是直接传入的mappingFunc函数,而是一个StateSpec 的对象,其实也是对函数的一个包装而已。接下来我们跟踪源码看看是怎么实现状态的管理的,会创建一个MapWithStateDStreamImpl实例:

def mapWithState[StateType: ClassTag, MappedType: ClassTag](      spec: StateSpec[K, V, StateType, MappedType]
    ): MapWithStateDStream[K, V, StateType, MappedType] = {
    new MapWithStateDStreamImpl[K, V, StateType, MappedType](      self,
      spec.asInstanceOf[StateSpecImpl[K, V, StateType, MappedType]]
    )
  }

当然是要看看其compute方法是怎么实现的:

 private val internalStream =    new InternalMapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream, spec)
 
  override def compute(validTime: Time): Option[RDD[MappedType]] = {
    internalStream.getOrCompute(validTime).map { _.flatMap[MappedType] { _.mappedData } }
  }

compute方法又把处理逻辑给了internalStream:InternalMapWithStateDStream,继续看InternalMapWithStateDStream的compute方法主要处理逻辑:

override def compute(validTime: Time): Option[RDD[MapWithStateRDDRecord[K, S, E]]] = {    // Get the previous state or create a new empty state RDD
    val prevStateRDD = getOrCompute(validTime - slideDuration) match {      case Some(rdd) =>        if (rdd.partitioner != Some(partitioner)) {          // If the RDD is not partitioned the right way, let us repartition it using the
          // partition index as the key. This is to ensure that state RDD is always partitioned
          // before creating another state RDD using it
          MapWithStateRDD.createFromRDD[K, V, S, E](
            rdd.flatMap { _.stateMap.getAll() }, partitioner, validTime)
        } else {
          rdd
        }      case None =>
        MapWithStateRDD.createFromPairRDD[K, V, S, E](
          spec.getInitialStateRDD().getOrElse(new EmptyRDD[(K, S)](ssc.sparkContext)),
          partitioner,
          validTime
        )
    }    // Compute the new state RDD with previous state RDD and partitioned data RDD
    // Even if there is no data RDD, use an empty one to create a new state RDD
    val dataRDD = parent.getOrCompute(validTime).getOrElse {
      context.sparkContext.emptyRDD[(K, V)]
    }
    val partitionedDataRDD = dataRDD.partitionBy(partitioner)
    val timeoutThresholdTime = spec.getTimeoutInterval().map { interval =>
      (validTime - interval).milliseconds
    }
    Some(new MapWithStateRDD(
      prevStateRDD, partitionedDataRDD, mappingFunction, validTime, timeoutThresholdTime))
  }

先后获取prevStateRDDparentRDD,并且保证使用的是同样的partitioner,接着以两个rdd为参数、自定义的mappingFunction函数、以及key的超时时间等为参数又创建了MapWithStateRDD,该RDD继承了RDD[MapWithStateRDDRecord[K, S, E]]MapWithStateRDD中的数据都是MapWithStateRDDRecord对象,每个分区对应一个对象来保存状态(这就是为什么两个RDD需要用同一个Partitioner),看看MapWithStateRDD的compute方法:

 override def compute(
      partition: Partition, context: TaskContext): Iterator[MapWithStateRDDRecord[K, S, E]] = {

    val stateRDDPartition = partition.asInstanceOf[MapWithStateRDDPartition]
    val prevStateRDDIterator = prevStateRDD.iterator(
      stateRDDPartition.previousSessionRDDPartition, context)
    val dataIterator = partitionedDataRDD.iterator(
      stateRDDPartition.partitionedDataRDDPartition, context)

    val prevRecord = if (prevStateRDDIterator.hasNext) Some(prevStateRDDIterator.next()) else None
    val newRecord = MapWithStateRDDRecord.updateRecordWithData(
      prevRecord,
      dataIterator,
      mappingFunction,
      batchTime,
      timeoutThresholdTime,
      removeTimedoutData = doFullScan // remove timedout data only when full scan is enabled
    )
    Iterator(newRecord)
  }

拿到prevStateRDDparentRDD对应分区的迭代器,接着获取了prevStateRDD的一条数据,这个分区也只有一条MapWithStateRDDRecord类型的数据,维护了对应分区所有数据状态,接着调用了最核心的方法来跟新状态,最后返回了只包含一条数据的迭代器,我们来看看是怎么这个核心的计算逻辑:

 def updateRecordWithData[K: ClassTag, V: ClassTag, S: ClassTag, E: ClassTag](
    prevRecord: Option[MapWithStateRDDRecord[K, S, E]],    dataIterator: Iterator[(K, V)],    mappingFunction: (Time, K, Option[V], State[S]) => Option[E],    batchTime: Time,    timeoutThresholdTime: Option[Long],    removeTimedoutData: Boolean
  ): MapWithStateRDDRecord[K, S, E] = {    // Create a new state map by cloning the previous one (if it exists) or by creating an empty one
    val newStateMap = prevRecord.map { _.stateMap.copy() }. getOrElse { new EmptyStateMap[K, S]() }

    val mappedData = new ArrayBuffer[E]
    val wrappedState = new StateImpl[S]()    // Call the mapping function on each record in the data iterator, and accordingly
    // update the states touched, and collect the data returned by the mapping function
    dataIterator.foreach { case (key, value) =>
      wrappedState.wrap(newStateMap.get(key))
      val returned = mappingFunction(batchTime, key, Some(value), wrappedState)      if (wrappedState.isRemoved) {
        newStateMap.remove(key)
      } else if (wrappedState.isUpdated
          || (wrappedState.exists && timeoutThresholdTime.isDefined)) {
        newStateMap.put(key, wrappedState.get(), batchTime.milliseconds)
      }
      mappedData ++= returned
    }    // Get the timed out state records, call the mapping function on each and collect the
    // data returned
    if (removeTimedoutData && timeoutThresholdTime.isDefined) {
      newStateMap.getByTime(timeoutThresholdTime.get).foreach { case (key, state, _) =>
        wrappedState.wrapTimingOutState(state)
        val returned = mappingFunction(batchTime, key, None, wrappedState)
        mappedData ++= returned
        newStateMap.remove(key)
      }
    }

    MapWithStateRDDRecord(newStateMap, mappedData)
  }

先copy了原来的状态,接着定义了两个变量,mappedData是最终要返回的结果,wrappedState可以看成是对state的包装,添加了一些额外的方法。

接着遍历当前批次的数据,从状态中取出key对应的原来的state,并根据自定义的函数来对state进行跟新,这里涉及到state的remove&update&timeout来对newStateMap进行跟新操作,并将有跟新的状态加入到了mappedData中。

若有设置超时时间,则还会对超时了的key进行移除,也会加入到mappedData中,最终通过新的状态对象newStateMap和需返回的mappedData数组构建了MapWithStateRDDRecord对象来返回。

而在前面提到的MapWithStateDStreamImpl实例的compute方法中:

  override def compute(validTime: Time): Option[RDD[MappedType]] = {
    internalStream.getOrCompute(validTime).map { _.flatMap[MappedType] { _.mappedData } }
  }

调用的就是这个mappedData数据。

我们发现返回的都是有update的数据,若要获取所有的状态在mapWithState之后调用stateSnapshots即可。若要清除某个key的状态,可在自定义的方法中调用state.remove()

总结

  • updateStateByKey底层是将preSateRDD和parentRDD进行co-group,然后对所有数据都将经过自定义的mapFun函数进行一次计算,即使当前batch只有一条数据也会进行这么复杂的计算,大大的降低了性能,并且计算时间会随着维护的状态的增加而增加。

  • mapWithstate底层是创建了一个MapWithStateRDD,存的数据是MapWithStateRDDRecord对象,一个Partition对应一个MapWithStateRDDRecord对象,该对象记录了对应Partition所有的状态,每次只会对当前batch有的数据进行跟新,而不会像updateStateByKey一样对所有数据计算。



作者:BIGUFO
链接:https://www.jianshu.com/p/9f743301f589


点击查看更多内容
0人点赞

若觉得本文不错,就分享一下吧!

评论

相关文章推荐

正在加载中
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消