为了账号安全,请及时绑定邮箱和手机立即绑定

CNN中激活函数,优化器,损失函数的选择

标签:
深度学习

一 激活函数
关于激活函数的定义,该论文的作者有提到,激活函数的定义
       如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。激活函数不是真的要去激活什么。在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题。

可微性: 当优化方法是基于梯度的时候,这个性质是必须的。  
单调性: 当激活函数是单调的时候,单层网络能够保证是凸函数。  
输出值的范围: 当激活函数输出值是 有限 的时候,基于梯度的优化方法会更加 稳定,因为特征的表示受有限权值的影响更显著;当激活函数的输出是 无限 的时候,模型的训练会更加高效,不过在这种情况小,一般需要更小的learning rate

从目前来看,常见的激活函数多是分段线性和具有指数形状的非线性函数
   注意:
       激活函数中存在的一些概念:左右饱和,硬饱和,软饱和。
       饱和
以下介绍常见的激活函数:
sigmoid  
       sigmoid 是使用范围最广的一类激活函数,具有指数函数形状,它在物理意义上最为接近生物神经元。此外,(0, 1) 的输出还可以被表示作概率,或用于输入的归一化,代表性的如Sigmoid交叉熵损失函数。
       然而,sigmoid也有其自身的缺陷,最明显的就是饱和性。从上图可以看到,其两侧导数逐渐趋近于0 。
       sigmoid 的软饱和性,使得深度神经网络在二三十年里一直难以有效的训练,是阻碍神经网络发展的重要原因。具体来说,由于在后向传递过程中,sigmoid向下传导的梯度包含了一个 f′(x) 因子(sigmoid关于输入的导数),因此一旦输入落入饱和区,f′(x) 就会变得接近于0,导致了向底层传递的梯度也变得非常小。此时,网络参数很难得到有效训练。这种现象被称为梯度消失。一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象。
       此外,sigmoid函数的输出均大于0,使得输出不是0均值,这称为偏移现象,这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。

tanh函数
       tanh也是一种非常常见的激活函数。与sigmoid相比,它的输出均值是0,使得其收敛速度要比sigmoid快,减少迭代次数。然而,从途中可以看出,tanh一样具有软饱和性,从而造成梯度消失。

ReLU是最近几年非常受欢迎的激活函数。被定义为
这里写图片描述
对应的图像是:
这里写图片描述
       可以看到,当x<0时,ReLU硬饱和,而当x>0时,则不存在饱和问题。所以,ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。这让我们能够直接以监督的方式训练深度神经网络,而无需依赖无监督的逐层预训练。
然而,随着训练的推进,部分输入会落入硬饱和区,导致对应权重无法更新。这种现象被称为“神经元死亡”。与sigmoid类似,ReLU的输出均值也大于0,偏移现象和 神经元死亡会共同影响网络的收敛性。
   但是除了ReLU本身的之外,TensorFlow还提供了一些相关的函数,比如定义为min(max(features, 0), 6)的tf.nn.relu6(features, name=None);或是CReLU,即tf.nn.crelu(features, name=None)。其中(CReLU部分可以参考这篇论文)。
优点
1.相比起Sigmoid和tanh,ReLU(e.g. a factor of 6 in Krizhevsky et al.)在SGD中能够快速收敛。例如在下图的实验中,在一个四层的卷积神经网络中,实线代表了ReLU,虚线代表了tanh,ReLU比起tanh更快地到达了错误率0.25处。据称,这是因为它线性、非饱和的形式。
2.Sigmoid和tanh涉及了很多很expensive的操作(比如指数),ReLU可以更加简单的实现。
3.有效缓解了梯度消失的问题。
4.在没有无监督预训练的时候也能有较好的表现。
5.提供了神经网络的稀疏表达能力。
缺点
   随着训练的进行,可能会出现神经元死亡,权重无法更新的情况。如果发生这种情况,那么流经神经元的梯度从这一点开始将永远是0。也就是说,ReLU神经元在训练中不可逆地死亡了。
这里写图片描述
这里写图片描述

针对在x<0的硬饱和问题,我们对ReLU做出相应的改进
这里写图片描述
当ai比较小而且固定的时候,我们称之为LReLU。LReLU最初的目的是为了避免梯度消失。但在一些实验中,我们发现LReLU对准确率并没有太大的影响。很多时候,当我们想要应用LReLU时,我们必须要非常小心谨慎地重复训练,选取出合适的a,LReLU的表现出的结果才比ReLU好。因此有人提出了一种自适应地从数据中学习参数的PReLU。
PReLU是LReLU的改进,可以自适应地从数据中学习参数。PReLU具有收敛速度快、错误率低的特点。PReLU可以用于反向传播的训练,可以与其他层同时优化。
在论文Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification中,作者就对比了PReLU和ReLU在ImageNet model A的训练效果。值得一提的是,在tflearn中有现成的LReLU和PReLU可以直接用

这里写图片描述

这里写图片描述
这里写图片描述
在论文Empirical Evaluation of Rectified Activations in Convolution Network中,作者对比了RReLULReLUPReLUReLU 在CIFAR-10、CIFAR-100、NDSB网络中的效果。

这里写图片描述
       融合了sigmoid和ReLU,左侧具有软饱和性,右侧无饱和性。右侧线性部分使得ELU能够缓解梯度消失,而左侧软饱能够让ELU对输入变化或噪声更鲁棒。ELU的输出均值接近于零,所以收敛速度更快。在 ImageNet上,不加 Batch Normalization 30 层以上的 ReLU 网络会无法收敛,PReLU网络在MSRA的Fan-in (caffe )初始化下会发散,而 ELU 网络在Fan-in/Fan-out下都能收敛。
       ELU的介绍
   这里写图片描述
   Maxout
   这里写图片描述

损失函数部分有待后续补充。。。

主要参考了:
深度学习笔记(三):激活函数和损失函数
浅谈深度学习中的激活函数

原文出处

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消