为了账号安全,请及时绑定邮箱和手机立即绑定

如何预测蟒蛇的结果?

如何预测蟒蛇的结果?

繁花如伊 2022-09-20 15:49:27
我有以下代码,其中我从4个输入值预测一个值:import numpy as npfrom sklearn.naive_bayes import GaussianNBfrom sklearn.model_selection import train_test_splitfrom sklearn.neural_network import MLPClassifierdata = np.loadtxt('C:/Users/hedeg/Desktop/RulaSoftEdgePrediction.txt')X_train = np.array(data[0:3500,0:4])y_train = np.array(data[0:3500,4])X_test = np.array(data[3500::,0:4])y_test = np.array(data[3500::,4])clf = MLPClassifier(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(5, 2), random_state=1)clf.fit(X_train, y_train)我收到此错误消息:raise ValueError("Unknown label type: %s" % repr(ys))ValueError: Unknown label type: (array([1. , 1.1, 1.2, ..., 3. , 3. , 3. ]),)我该如何解决这个问题?
查看完整描述

1 回答

?
万千封印

TA贡献1891条经验 获得超3个赞

尝试使用这个:


from sklearn.linear_model import LogisticRegression

from sklearn.datasets import make_blobs

# generate 2d classification dataset

X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1)

# fit final model

model = LogisticRegression()

model.fit(X, y)


# example of training a final classification model

from sklearn.linear_model import LogisticRegression

from sklearn.datasets import make_blobs

# generate 2d classification dataset

X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1)

# fit final model

model = LogisticRegression()

model.fit(X, y)


查看完整回答
反对 回复 2022-09-20
  • 1 回答
  • 0 关注
  • 128 浏览
慕课专栏
更多

添加回答

举报

0/150
提交
取消
微信客服

购课补贴
联系客服咨询优惠详情

帮助反馈 APP下载

慕课网APP
您的移动学习伙伴

公众号

扫描二维码
关注慕课网微信公众号