我有以下代码,其中我从4个输入值预测一个值:import numpy as npfrom sklearn.naive_bayes import GaussianNBfrom sklearn.model_selection import train_test_splitfrom sklearn.neural_network import MLPClassifierdata = np.loadtxt('C:/Users/hedeg/Desktop/RulaSoftEdgePrediction.txt')X_train = np.array(data[0:3500,0:4])y_train = np.array(data[0:3500,4])X_test = np.array(data[3500::,0:4])y_test = np.array(data[3500::,4])clf = MLPClassifier(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(5, 2), random_state=1)clf.fit(X_train, y_train)我收到此错误消息:raise ValueError("Unknown label type: %s" % repr(ys))ValueError: Unknown label type: (array([1. , 1.1, 1.2, ..., 3. , 3. , 3. ]),)我该如何解决这个问题?
1 回答
万千封印
TA贡献1891条经验 获得超3个赞
尝试使用这个:
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_blobs
# generate 2d classification dataset
X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1)
# fit final model
model = LogisticRegression()
model.fit(X, y)
# example of training a final classification model
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_blobs
# generate 2d classification dataset
X, y = make_blobs(n_samples=100, centers=2, n_features=2, random_state=1)
# fit final model
model = LogisticRegression()
model.fit(X, y)
添加回答
举报
0/150
提交
取消
