1 回答

TA贡献1796条经验 获得超7个赞
您可以使用以下脚本来保存周围没有空格的图像:
# Plotting
from PIL import Image
min_value = np.nanmin(pixel)
max_value = np.nanmax(pixel)
pixel_int = (255*(pixel-min_value)/(max_value-min_value)).astype(np.uint8)
# sample LUT from matplotlib
lut = (plt.cm.viridis(np.arange(256)) * 255).astype(np.uint8) # CHOOSE COLORMAP HERE viridis, jet, rainbow
pixel_rgb = lut[pixel_int]
# changing NaNs to a chosen color
nan_color = [0,0,0,0] # Transparent NaNs
for i,c in enumerate(nan_color):
pixel_rgb[:,:,i] = np.where(np.isnan(pixel),c,pixel_rgb[:,:,i])
# apply LUT and display
img = Image.fromarray(pixel_rgb, 'RGBA')
# Saving image and matrix
img.save('julia.png')
np.save('julia.npy', pixel)
# Delete data
del(img, pixel)
# Loading image and matrix
img = Image.open('julia.png')
pixel = np.load("julia.npy")
# Show image
img.show()
print(pixel)
print(min_value, max_value)
每个数组值将获得一个像素。X和轴的 2 个分辨率的输出Y:
X,Y = (np.arange(-1.5, 1.5, 0.2),)*2:
X,Y = (np.arange(-1.5, 1.5, 0.02),)*2
:
添加回答
举报