为了账号安全,请及时绑定邮箱和手机立即绑定

Golang 新手可能会踩的 50 个坑(三)

41. slice 中隐藏的数据

从 slice 中重新切出新 slice 时,新 slice 会引用原 slice 的底层数组。如果跳了这个坑,程序可能会分配大量的临时 slice 来指向原底层数组的部分数据,将导致难以预料的内存使用。

func get() []byte {
    raw := make([]byte, 10000)
    fmt.Println(len(raw), cap(raw), &raw[0])    // 10000 10000 0xc420080000
    return raw[:3]    // 重新分配容量为 10000 的 slice
}

func main() {
    data := get()
    fmt.Println(len(data), cap(data), &data[0])    // 3 10000 0xc420080000
}

可以通过拷贝临时 slice 的数据,而不是重新切片来解决:

func get() (res []byte) {
    raw := make([]byte, 10000)
    fmt.Println(len(raw), cap(raw), &raw[0])    // 10000 10000 0xc420080000
    res = make([]byte, 3)
    copy(res, raw[:3])
    return
}

func main() {
    data := get()
    fmt.Println(len(data), cap(data), &data[0])    // 3 3 0xc4200160b8
}
42. Slice 中数据的误用

举个简单例子,重写文件路径(存储在 slice 中)

分割路径来指向每个不同级的目录,修改第一个目录名再重组子目录名,创建新路径:

// 错误使用 slice 的拼接示例
func main() {
    path := []byte("AAAA/BBBBBBBBB")
    sepIndex := bytes.IndexByte(path, '/') // 4
    println(sepIndex)

    dir1 := path[:sepIndex]
    dir2 := path[sepIndex+1:]
    println("dir1: ", string(dir1))        // AAAA
    println("dir2: ", string(dir2))        // BBBBBBBBB

    dir1 = append(dir1, "suffix"...)
       println("current path: ", string(path))    // AAAAsuffixBBBB

    path = bytes.Join([][]byte{dir1, dir2}, []byte{'/'})
    println("dir1: ", string(dir1))        // AAAAsuffix
    println("dir2: ", string(dir2))        // uffixBBBB

    println("new path: ", string(path))    // AAAAsuffix/uffixBBBB    // 错误结果
}

拼接的结果不是正确的 AAAAsuffix/BBBBBBBBB,因为 dir1、 dir2 两个 slice 引用的数据都是 path 的底层数组,第 13 行修改 dir1 同时也修改了 path,也导致了 dir2 的修改

解决方法:

  • 重新分配新的 slice 并拷贝你需要的数据
  • 使用完整的 slice 表达式:input[low:high:max],容量便调整为 max low
// 使用 full slice expression
func main() {

    path := []byte("AAAA/BBBBBBBBB")
    sepIndex := bytes.IndexByte(path, '/') // 4
    dir1 := path[:sepIndex:sepIndex]        // 此时 cap(dir1) 指定为4, 而不是先前的 16
    dir2 := path[sepIndex+1:]
    dir1 = append(dir1, "suffix"...)

    path = bytes.Join([][]byte{dir1, dir2}, []byte{'/'})
    println("dir1: ", string(dir1))        // AAAAsuffix
    println("dir2: ", string(dir2))        // BBBBBBBBB
    println("new path: ", string(path))    // AAAAsuffix/BBBBBBBBB
}

第 6 行中第三个参数是用来控制 dir1 的新容量,再往 dir1 中 append 超额元素时,将分配新的 buffer 来保存。而不是覆盖原来的 path 底层数组

43. 旧 slice

当你从一个已存在的 slice 创建新 slice 时,二者的数据指向相同的底层数组。如果你的程序使用这个特性,那需要注意 "旧"(stale) slice 问题。

某些情况下,向一个 slice 中追加元素而它指向的底层数组容量不足时,将会重新分配一个新数组来存储数据。而其他 slice 还指向原来的旧底层数组。

// 超过容量将重新分配数组来拷贝值、重新存储
func main() {
    s1 := []int{1, 2, 3}
    fmt.Println(len(s1), cap(s1), s1)    // 3 3 [1 2 3 ]

    s2 := s1[1:]
    fmt.Println(len(s2), cap(s2), s2)    // 2 2 [2 3]

    for i := range s2 {
        s2[i] += 20
    }
    // 此时的 s1 与 s2 是指向同一个底层数组的
    fmt.Println(s1)        // [1 22 23]
    fmt.Println(s2)        // [22 23]

    s2 = append(s2, 4)    // 向容量为 2 的 s2 中再追加元素,此时将分配新数组来存

    for i := range s2 {
        s2[i] += 10
    }
    fmt.Println(s1)        // [1 22 23]    // 此时的 s1 不再更新,为旧数据
    fmt.Println(s2)        // [32 33 14]
}
44. 类型声明与方法

从一个现有的非 interface 类型创建新类型时,并不会继承原有的方法:

// 定义 Mutex 的自定义类型
type myMutex sync.Mutex

func main() {
    var mtx myMutex
    mtx.Lock()
    mtx.UnLock()
}

mtx.Lock undefined (type myMutex has no field or method Lock)...

如果你需要使用原类型的方法,可将原类型以匿名字段的形式嵌到你定义的新 struct 中:

// 类型以字段形式直接嵌入
type myLocker struct {
    sync.Mutex
}

func main() {
    var locker myLocker
    locker.Lock()
    locker.Unlock()
}

interface 类型声明也保留它的方法集:

type myLocker sync.Locker

func main() {
    var locker myLocker
    locker.Lock()
    locker.Unlock()
}
45. 跳出 for-switch 和 for-select 代码块

没有指定标签的 break 只会跳出 switch/select 语句,若不能使用 return 语句跳出的话,可为 break 跳出标签指定的代码块:

// break 配合 label 跳出指定代码块
func main() {
loop:
    for {
        switch {
        case true:
            fmt.Println("breaking out...")
            //break    // 死循环,一直打印 breaking out...
            break loop
        }
    }
    fmt.Println("out...")
}

goto 虽然也能跳转到指定位置,但依旧会再次进入 for-switch,死循环。

46. for 语句中的迭代变量与闭包函数

for 语句中的迭代变量在每次迭代中都会重用,即 for 中创建的闭包函数接收到的参数始终是同一个变量,在 goroutine 开始执行时都会得到同一个迭代值:

func main() {
    data := []string{"one", "two", "three"}

    for _, v := range data {
        go func() {
            fmt.Println(v)
        }()
    }

    time.Sleep(3 * time.Second)
    // 输出 three three three
}

最简单的解决方法:无需修改 goroutine 函数,在 for 内部使用局部变量保存迭代值,再传参:

func main() {
    data := []string{"one", "two", "three"}

    for _, v := range data {
        vCopy := v
        go func() {
            fmt.Println(vCopy)
        }()
    }

    time.Sleep(3 * time.Second)
    // 输出 one two three
}

另一个解决方法:直接将当前的迭代值以参数形式传递给匿名函数:

func main() {
    data := []string{"one", "two", "three"}

    for _, v := range data {
        go func(in string) {
            fmt.Println(in)
        }(v)
    }

    time.Sleep(3 * time.Second)
    // 输出 one two three
}

注意下边这个稍复杂的 3 个示例区别:

type field struct {
    name string
}

func (p *field) print() {
    fmt.Println(p.name)
}

// 错误示例
func main() {
    data := []field{{"one"}, {"two"}, {"three"}}
    for _, v := range data {
        go v.print()
    }
    time.Sleep(3 * time.Second)
    // 输出 three three three 
}

// 正确示例
func main() {
    data := []field{{"one"}, {"two"}, {"three"}}
    for _, v := range data {
        v := v
        go v.print()
    }
    time.Sleep(3 * time.Second)
    // 输出 one two three
}

// 正确示例
func main() {
    data := []*field{{"one"}, {"two"}, {"three"}}
    for _, v := range data {    // 此时迭代值 v 是三个元素值的地址,每次 v 指向的值不同
        go v.print()
    }
    time.Sleep(3 * time.Second)
    // 输出 one two three
}
47. defer 函数的参数值

对 defer 延迟执行的函数,它的参数会在声明时候就会求出具体值,而不是在执行时才求值:

// 在 defer 函数中参数会提前求值
func main() {
    var i = 1
    defer fmt.Println("result: ", func() int { return i * 2 }())
    i++
}

result: 2

48. defer 函数的执行时机

对 defer 延迟执行的函数,会在调用它的函数结束时执行,而不是在调用它的语句块结束时执行,注意区分开。

比如在一个长时间执行的函数里,内部 for 循环中使用 defer 来清理每次迭代产生的资源调用,就会出现问题:

// 命令行参数指定目录名
// 遍历读取目录下的文件
func main() {

    if len(os.Args) != 2 {
        os.Exit(1)
    }

    dir := os.Args[1]
    start, err := os.Stat(dir)
    if err != nil || !start.IsDir() {
        os.Exit(2)
    }

    var targets []string
    filepath.Walk(dir, func(fPath string, fInfo os.FileInfo, err error) error {
        if err != nil {
            return err
        }

        if !fInfo.Mode().IsRegular() {
            return nil
        }

        targets = append(targets, fPath)
        return nil
    })

    for _, target := range targets {
        f, err := os.Open(target)
        if err != nil {
            fmt.Println("bad target:", target, "error:", err)    //error:too many open files
            break
        }
        defer f.Close()    // 在每次 for 语句块结束时,不会关闭文件资源

        // 使用 f 资源
    }
}

先创建 10000 个文件:

#!/bin/bash
for n in {1..10000}; do
    echo content > "file${n}.txt"
done

运行效果:

![图片描述][1]

解决办法:defer 延迟执行的函数写入匿名函数中:

// 目录遍历正常
func main() {
    // ...

    for _, target := range targets {
        func() {
            f, err := os.Open(target)
            if err != nil {
                fmt.Println("bad target:", target, "error:", err)
                return    // 在匿名函数内使用 return 代替 break 即可
            }
            defer f.Close()    // 匿名函数执行结束,调用关闭文件资源

            // 使用 f 资源
        }()
    }
}

当然你也可以去掉 defer,在文件资源使用完毕后,直接调用 f.Close() 来关闭。

49. 失败的类型断言

在类型断言语句中,断言失败则会返回目标类型的“零值”,断言变量与原来变量混用可能出现异常情况:

// 错误示例
func main() {
    var data interface{} = "great"

    // data 混用
    if data, ok := data.(int); ok {
        fmt.Println("[is an int], data: ", data)
    } else {
        fmt.Println("[not an int], data: ", data)    // [isn't a int], data:  0
    }
}

// 正确示例
func main() {
    var data interface{} = "great"

    if res, ok := data.(int); ok {
        fmt.Println("[is an int], data: ", res)
    } else {
        fmt.Println("[not an int], data: ", data)    // [not an int], data:  great
    }
}
50. 阻塞的 gorutinue 与资源泄露

在 2012 年 Google I/O 大会上,Rob Pike 的 Go Concurrency Patterns 演讲讨论 Go 的几种基本并发模式,如 完整代码 中从数据集中获取第一条数据的函数:

func First(query string, replicas []Search) Result {
    c := make(chan Result)
    replicaSearch := func(i int) { c <- replicas[i](query) }
    for i := range replicas {
        go replicaSearch(i)
    }
    return <-c
}

在搜索重复时依旧每次都起一个 goroutine 去处理,每个 goroutine 都把它的搜索结果发送到结果 channel 中,channel 中收到的第一条数据会直接返回。

返回完第一条数据后,其他 goroutine 的搜索结果怎么处理?他们自己的协程如何处理?

在 First() 中的结果 channel 是无缓冲的,这意味着只有第一个 goroutine 能返回,由于没有 receiver,其他的 goroutine 会在发送上一直阻塞。如果你大量调用,则可能造成资源泄露。

为避免泄露,你应该确保所有的 goroutine 都能正确退出,有 2 个解决方法:

使用带缓冲的 channel,确保能接收全部 goroutine 的返回结果:

func First(query string, replicas ...Search) Result {  
    c := make(chan Result,len(replicas))    
    searchReplica := func(i int) { c <- replicas[i](query) }
    for i := range replicas {
        go searchReplica(i)
    }
    return <-c
}

使用 select 语句,配合能保存一个缓冲值的 channel default 语句:
default 的缓冲 channel 保证了即使结果 channel 收不到数据,也不会阻塞 goroutine

func First(query string, replicas ...Search) Result {  
    c := make(chan Result,1)
    searchReplica := func(i int) { 
        select {
        case c <- replicas[i](query):
        default:
        }
    }
    for i := range replicas {
        go searchReplica(i)
    }
    return <-c
}
使用特殊的废弃(cancellation) channel 来中断剩余 goroutine 的执行:
func First(query string, replicas ...Search) Result {  
    c := make(chan Result)
    done := make(chan struct{})
    defer close(done)
    searchReplica := func(i int) { 
        select {
        case c <- replicas[i](query):
        case <- done:
        }
    }
    for i := range replicas {
        go searchReplica(i)
    }

    return <-c
}

Rob Pike 为了简化演示,没有提及演讲代码中存在的这些问题。不过对于新手来说,可能会不加思考直接使用。

高级篇:51-57
51. 使用指针作为方法的 receiver

只要值是可寻址的,就可以在值上直接调用指针方法。即是对一个方法,它的 receiver 是指针就足矣。

但不是所有值都是可寻址的,比如 map 类型的元素、通过 interface 引用的变量:

type data struct {
    name string
}

type printer interface {
    print()
}

func (p *data) print() {
    fmt.Println("name: ", p.name)
}

func main() {
    d1 := data{"one"}
    d1.print()    // d1 变量可寻址,可直接调用指针 receiver 的方法

    var in printer = data{"two"}
    in.print()    // 类型不匹配

    m := map[string]data{
        "x": data{"three"},
    }
    m["x"].print()    // m["x"] 是不可寻址的    // 变动频繁
}
cannot use data literal (type data) as type printer in assignment:
data does not implement printer (print method has pointer receiver)

cannot call pointer method on m["x"]
cannot take the address of m["x"]
52. 更新 map 字段的值

如果 map 一个字段的值是 struct 类型,则无法直接更新该 struct 的单个字段:

// 无法直接更新 struct 的字段值
type data struct {
    name string
}

func main() {
    m := map[string]data{
        "x": {"Tom"},
    }
    m["x"].name = "Jerry"
}
cannot assign to struct field m["x"].name in map
因为 map 中的元素是不可寻址的。需区分开的是,slice 的元素可寻址:

type data struct {
    name string
}

func main() {
    s := []data{{"Tom"}}
    s[0].name = "Jerry"
    fmt.Println(s)    // [{Jerry}]
}

注意:不久前 gccgo 编译器可更新 map struct 元素的字段值,不过很快便修复了,官方认为是 Go1.3 的潜在特性,无需及时实现,依旧在 todo list 中。

  • 更新 map 中 struct 元素的字段值,有 2 个方法:

使用局部变量

// 提取整个 struct 到局部变量中,修改字段值后再整个赋值
type data struct {
    name string
}

func main() {
    m := map[string]data{
        "x": {"Tom"},
    }
    r := m["x"]
    r.name = "Jerry"
    m["x"] = r
    fmt.Println(m)    // map[x:{Jerry}]
}
使用指向元素的 map 指针
func main() {
    m := map[string]*data{
        "x": {"Tom"},
    }

    m["x"].name = "Jerry"    // 直接修改 m["x"] 中的字段
    fmt.Println(m["x"])    // &{Jerry}
}

但是要注意下边这种误用:

func main() {
    m := map[string]*data{
        "x": {"Tom"},
    }
    m["z"].name = "what???"     
    fmt.Println(m["x"])
}

panic: runtime error: invalid memory address or nil pointer
dereference

53. nil interface 和 nil interface 值

虽然 interface 看起来像指针类型,但它不是。interface 类型的变量只有在类型和值均为 nil 时才为 nil

如果你的 interface 变量的值是跟随其他变量变化的(雾),与 nil 比较相等时小心:

func main() {
    var data *byte
    var in interface{}

    fmt.Println(data, data == nil)    // <nil> true
    fmt.Println(in, in == nil)    // <nil> true

    in = data
    fmt.Println(in, in == nil)    // <nil> false    // data 值为 nil,但 in 值不为 nil
}

如果你的函数返回值类型是 interface,更要小心这个坑:

// 错误示例
func main() {
    doIt := func(arg int) interface{} {
        var result *struct{} = nil
        if arg > 0 {
            result = &struct{}{}
        }
        return result
    }

    if res := doIt(-1); res != nil {
        fmt.Println("Good result: ", res)    // Good result:  <nil>
        fmt.Printf("%T\n", res)            // *struct {}    // res 不是 nil,它的值为 nil
        fmt.Printf("%v\n", res)            // <nil>
    }
}

// 正确示例
func main() {
    doIt := func(arg int) interface{} {
        var result *struct{} = nil
        if arg > 0 {
            result = &struct{}{}
        } else {
            return nil    // 明确指明返回 nil
        }
        return result
    }

    if res := doIt(-1); res != nil {
        fmt.Println("Good result: ", res)
    } else {
        fmt.Println("Bad result: ", res)    // Bad result:  <nil>
    }
}
54. 堆栈变量

你并不总是清楚你的变量是分配到了堆还是栈。

在 C++ 中使用 new 创建的变量总是分配到堆内存上的,但在 Go 中即使使用 new()、make() 来创建变量,变量为内存分配位置依旧归 Go 编译器管。

Go 编译器会根据变量的大小及其 "escape analysis" 的结果来决定变量的存储位置,故能准确返回本地变量的地址,这在 C/C++ 中是不行的。

在 go build 或 go run 时,加入 -m 参数,能准确分析程序的变量分配位置:

![图片描述][2]

55. GOMAXPROCS、Concurrency(并发)and Parallelism(并行)

Go 1.4 及以下版本,程序只会使用 1 个执行上下文 / OS 线程,即任何时间都最多只有 1 个 goroutine 在执行。

Go 1.5 版本将可执行上下文的数量设置为 runtime.NumCPU() 返回的逻辑 CPU 核心数,这个数与系统实际总的 CPU 逻辑核心数是否一致,取决于你的 CPU 分配给程序的核心数,可以使用 GOMAXPROCS 环境变量或者动态的使用 runtime.GOMAXPROCS() 来调整。

误区:GOMAXPROCS 表示执行 goroutine 的 CPU 核心数,参考文档

GOMAXPROCS 的值是可以超过 CPU 的实际数量的,在 1.5 中最大为 256

func main() {
    fmt.Println(runtime.GOMAXPROCS(-1))    // 4
    fmt.Println(runtime.NumCPU())    // 4
    runtime.GOMAXPROCS(20)
    fmt.Println(runtime.GOMAXPROCS(-1))    // 20
    runtime.GOMAXPROCS(300)
    fmt.Println(runtime.GOMAXPROCS(-1))    // Go 1.9.2 // 300
}
56. 读写操作的重新排序

Go 可能会重排一些操作的执行顺序,可以保证在一个 goroutine 中操作是顺序执行的,但不保证多 goroutine 的执行顺序:

var _ = runtime.GOMAXPROCS(3)

var a, b int

func u1() {
    a = 1
    b = 2
}

func u2() {
    a = 3
    b = 4
}

func p() {
    println(a)
    println(b)
}

func main() {
    go u1()    // 多个 goroutine 的执行顺序不定
    go u2()    
    go p()
    time.Sleep(1 * time.Second)
}

运行效果:

![图片描述][3]

如果你想保持多 goroutine 像代码中的那样顺序执行,可以使用 channel 或 sync 包中的锁机制等。

57. 优先调度

你的程序可能出现一个 goroutine 在运行时阻止了其他 goroutine 的运行,比如程序中有一个不让调度器运行的 for 循环:

func main() {
    done := false

    go func() {
        done = true
    }()

    for !done {
    }

    println("done !")
}

for 的循环体不必为空,但如果代码不会触发调度器执行,将出现问题。

调度器会在 GC、Go 声明、阻塞 channel、阻塞系统调用和锁操作后再执行,也会在非内联函数调用时执行:

func main() {
    done := false

    go func() {
        done = true
    }()

    for !done {
        println("not done !")    // 并不内联执行
    }

    println("done !")
}

可以添加 -m 参数来分析 for 代码块中调用的内联函数:

![图片描述][4]

你也可以使用 runtime 包中的 Gosched() 来 手动启动调度器:

func main() {
    done := false

    go func() {
        done = true
    }()

    for !done {
        runtime.Gosched()
    }

    println("done !")
}

运行效果:

![图片描述][5]

总结

感谢原作者 kcqon 总结的这篇博客,让我受益匪浅。

由于译者水平有限,不免出现理解失误,望读者在下评论区指出,不胜感激。

后续再更新类似高质量文章的翻译

完整阅读,请点击以下:

Golang 新手可能会踩的 50 个坑(一)
Golang 新手可能会踩的 50 个坑(二)
Golang 新手可能会踩的 50 个坑(三)

点击查看更多内容
2人点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消