Google最近在Github上开源了一个响应式框架——agera,我个人对这样的技术是比较感兴趣的,在这之前也学习过RxJava,所以想着给大家带来有关于这两者分析的博文。
在我翻阅agera的源码的时候,发现里面整个event事件驱动都是靠Android的handler机制,并且使用了ThreadLocal进行线程隔离,所以在分析agera之前,我们要先了解handler机制,为之后打下基础。
Handler机制
对于handler大家一定不会陌生,在Android中,hanlder的作用一般就是用来通信,传递信息,相信大家如果写过异步通信的代码的话,除非使用第三方框架或者AsyncTask,一般大家都会使用handler去把子线程的消息传递到主线程。下面我们先来看看handler最简单的用法吧
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | public class MainActivity extends AppCompatActivity {
    private TextView tv;
    private Handler handler = new Handler(){
        @Override
        public void handleMessage(Message msg) {
            tv.setText("got msg!!");
        }
    };
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        tv = (TextView)findViewById(R.id.show);
    }
    public void post(View view){
        handler.sendEmptyMessage(0);
    }
} | 
当你点击按钮之后,handler通过sendEmptyMessage()这个方法将消息传递了出去,并且在对应的handleMessage()方法中处理。这个handler是在主线城中创建的,但是大家如果使用相同的代码在子线程中创建一个handler的话
错误的原因是不能在没有调用Looper.loop()的前提下在thread中创建handler,那这个Looper是什么呢,下面让我带大家进行分析。
Looper
| 1 2 3 4 5 6 7 8 9 10 11 12 13 | public final class Looper {
    /*
     * API Implementation Note:
     *
     * This class contains the code required to set up and manage an event loop
     * based on MessageQueue.  APIs that affect the state of the queue should be
     * defined on MessageQueue or Handler rather than on Looper itself.  For example,
     * idle handlers and sync barriers are defined on the queue whereas preparing the
     * thread, looping, and quitting are defined on the looper.
     */
     ......
} | 
通过注释可以看到,它是用来进行消息循环的类。在我们调用前面提到的Looper.loop()方法之前,要先调用它的prepare()方法。
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | /** Initialize the current thread as a looper.
  * This gives you a chance to create handlers that then reference
  * this looper, before actually starting the loop. Be sure to call
  * {@link #loop()} after calling this method, and end it by calling
  * {@link #quit()}.
  */
public static void prepare() {
    prepare(true);
}
private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
} | 
通过注释可以清楚的了解这个方法的作用是创建一个Looper并且让handler去持有,在调用looper()之前必须保证已经调用了prepare()。
| 1 2 3 4 | if (sThreadLocal.get() != null) {
    throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed)); | 
下面这段函数牵扯到了ThreadLocal,这个我之后会讲,这里大家需要了解的就是这段函数的作用是用ThreadLocal去判断是否有Looper实例,如果有则抛出异常,没有就新建一个并且存放到ThreadLocal中。首先ThreadLacol是线程隔离的,这样做就保证了一个线程中有且仅有一个Looper实例。
创建出来了Looper实例之后,让我们看看它的loop()方法。
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | /**
 * Run the message queue in this thread. Be sure to call
 * {@link #quit()} to end the loop.
 */
public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;
    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();
    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }
        // This must be in a local variable, in case a UI event sets the logger
        Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }
        msg.target.dispatchMessage(msg);
        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }
        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }
        msg.recycleUnchecked();
    }
} | 
通过注释可以看出这个方法的作用是开启一个message queue的循环。
在loop()方法中首先通过myLooper()方法去获取当前线程中的Looper实例。
| 1 2 3 4 5 6 7 | /**
 * Return the Looper object associated with the current thread.  Returns
 * null if the calling thread is not associated with a Looper.
 */
public static @Nullable Looper myLooper() {
    return sThreadLocal.get();
} | 
然后获取到Looper中的MessageQueue。
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | for (;;) {
    Message msg = queue.next(); // might block
    if (msg == null) {
        // No message indicates that the message queue is quitting.
        return;
    }
    // This must be in a local variable, in case a UI event sets the logger
    Printer logging = me.mLogging;
    if (logging != null) {
        logging.println(">>>>> Dispatching to " + msg.target + " " +
                msg.callback + ": " + msg.what);
    }
    msg.target.dispatchMessage(msg);
    if (logging != null) {
        logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
    }
    // Make sure that during the course of dispatching the
    // identity of the thread wasn't corrupted.
    final long newIdent = Binder.clearCallingIdentity();
    if (ident != newIdent) {
        Log.wtf(TAG, "Thread identity changed from 0x"
                + Long.toHexString(ident) + " to 0x"
                + Long.toHexString(newIdent) + " while dispatching to "
                + msg.target.getClass().getName() + " "
                + msg.callback + " what=" + msg.what);
    }
    msg.recycleUnchecked();
} | 
这段代码的意思是开启一个死循环,在其中通过queue.next()去获取MessageQueue中消息,这里是会阻塞的。
| 1 | Message msg = queue.next(); // might block | 
一旦获取到了消息,就调用Message的target实例去分发消息。
| 1 | msg.target.dispatchMessage(msg); | 
然后将Message进行重用。
| 1 | msg.recycleUnchecked(); | 
这里有一个小细节,如果大家想得到一个Mesaage的话,最好不要通过new的方式去新建,而是通过下面这种方式。
| 1 | handler.obtainMessage(); | 
或者
| 1 | Message.obtain(); | 
至此,Looper的分析就完了,很简单,就做了两件事。
第一,通过Looper.prepare()去新建一个Looper实例。
第二,通过Looper.loop()去开启消息循环。
但是大家看了上面的代码肯定有一个疑问,在通过MessageQueue得到传递过来的Message之后调用的
| 1 | msg.target.dispatchMessage(msg); | 
这个方法,target是什么呢?下面就让我们继续分析Message类。
Message
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | /**
 * 
 * Defines a message containing a description and arbitrary data object that can be
 * sent to a {@link Handler}.  This object contains two extra int fields and an
 * extra object field that allow you to not do allocations in many cases.  
 *
 * <p class="note">While the constructor of Message is public, the best way to get
 * one of these is to call {@link #obtain Message.obtain()} or one of the
 * {@link Handler#obtainMessage Handler.obtainMessage()} methods, which will pull
 * them from a pool of recycled objects.</p>
 */
public final class Message implements Parcelable {
   .......
} | 
Message其实就是一个消息的实体类,实现了Parcelable用于传递。
这个类大家不会陌生,里面有几个成员变量
| 1 2 3 4 5 6 7 | public int what; public int arg1; public int arg2; public Object obj; | 
大家经常用到,这里我就不做介绍了。还是让我们看看target是什么。
| 1 | /*package*/ Handler target; | 
target是一个Handler。那么这个Handler又是怎么被赋值的呢?
是在Handler中被赋值的,下面让我们来看Handler的代码。
Handler
| 1 2 3 4 5 6 7 | private Handler handler = new Handler(){
    @Override
    public void handleMessage(Message msg) {
        tv.setText("got msg!!");
    }
}; | 
首先这是我们初始化的代码,让我们看看Handler的构造函数
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | public Handler() {
    this(null, false);
}
public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    } | 
直接通过Looper.myLooper拿到当前线程的Looper实例。
| 1 2 3 4 5 | mLooper = Looper.myLooper();
if (mLooper == null) {
    throw new RuntimeException(
        "Can't create handler inside thread that has not called Looper.prepare()");
} | 
这里就可以联系上面的那个错误了,为什么我们在子线程中不调用Looper.prepare()直接使用handler会报错呢?就是因为这里,如果通过Looper.myLooper()去ThreadLocal中取不到对应线程的Looper就直接报错了。那为什么我们在主线城中不用显示的调用Looper.prepare()和Looper.loop()呢?那是因为Android Framework层已经帮大家做了这样的事。这是合理的,因为其实Android Framework层中很多地方都要用到handler通信,所以它干脆直接帮你做了初始化的工作。
接着把Looper的MessageQueue赋值到自己这里。
| 1 | mQueue = mLooper.mQueue; | 
这里就对应了前面Looper类注释中的“This gives you a chance to create handlers that then reference this looper, before actually starting the loop.”这句话,让handler持有Looper。
接着让我们看Handler发送消息的代码。
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | public final boolean sendEmptyMessage(int what)
{
    return sendEmptyMessageDelayed(what, 0);
}
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageDelayed(msg, delayMillis);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    } | 
所有和发送消息有关的代码最终都会走到sendMessageAtTime()这个方法中。在这个方法中获取到了当前的MessageQueue,并且调用了enqueueMessage()。
| 1 2 3 4 5 6 7 | private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
} | 
看到了吗,这里将对应的msg的target赋值,也就是Handler把自己赋值给了Message。然后丢到Queue中。
然后,如果你调用过Looer.loop(),在其中MessageQueue的next()方法就会接受到对应的Message,之后的流程上面已经讨论过了。
至于Handler的post方法只是做了一层封装而已。
| 1 2 3 4 5 6 7 8 9 10 | public final boolean post(Runnable r)
{
   return  sendMessageDelayed(getPostMessage(r), 0);
}
private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    } | 
最终调用的还是sendMessageAtTime()这个方法。
总结
这里要总结的一点是,Handler的onHandle()方法执行的线程是和Handler创建的线程相关的,如果你Handler在主线程中创建,就算你在子线程中send msg,最终还是会回到主线程中进行处理,反义亦然。因为你Handler中持有的MessageQueue所在的线程是在创建的时候就决定了的,所以分发的时候也是在对应的线程。
这也是为什么我们可以通过handler去做异步操作的原因。
有了这方面的基础,下篇文章就可以带大家愉快的遨游在agera的海洋中了。
共同学习,写下你的评论
评论加载中...
作者其他优质文章
 
                 
             
			 
					 
					