为了账号安全,请及时绑定邮箱和手机立即绑定

牛客12533题解析:动态规划求解最大乘积问题(附代码实现)

标签:
C++

https://img1.sycdn.imooc.com/0af34368087c5a5909670695.jpg

一、题目解读

牛客12533题要求从n个人中选择k个人,使他们的能力值乘积最大,且相邻两人编号差不超过d。需考虑正负数的乘积组合情况,通过优化算法找到最优解。

二、解题思路

采用动态规划(Dynamic Programming)解决。定义二维数组dp_max[i][j]和dp_min[i][j],分别表示选j个人且最后一个人为i时的最大和最小乘积。通过状态转移方程,利用前j-1个人的乘积与当前能力值计算,兼顾正×正、负×负、正×负三种情况,避免重复计算。

三、解题步骤

1. 初始化:选1人时,乘积即其能力值。

2. 循环处理选j个人(2≤j≤k),当前人i从j到n遍历。

3. 前一个人l在[i-d, i-1]范围内,计算最大/最小乘积:

○ dp_max[i][j] = max(dp_max[l][j-1] * ability[i-1], dp_min[l][j-1] * ability[i-1])

○ dp_min[i][j] = min(dp_max[l][j-1] * ability[i-1], dp_min[l][j-1] * ability[i-1])

4. 最终结果:遍历dp_max[k][i](i=k到n)取最大值。

四、代码与注释

#include <iostream>
#include <vector>
#include <climits>
using namespace std;

long long maxProduct(int n, vector<int>& ability, int k, int d) {
    // dp_max[i][j]表示选j个人,最后一个人是i时的最大乘积
    // dp_min[i][j]表示选j个人,最后一个人是i时的最小乘积
    vector<vector<long long>> dp_max(n+1, vector<long long>(k+1, LLONG_MIN));
    vector<vector<long long>> dp_min(n+1, vector<long long>(k+1, LLONG_MAX));
    
    // 初始化:选1个人时就是自己的能力值
    for(int i = 1; i <= n; i++) {
        dp_max[i][1] = ability[i-1];
        dp_min[i][1] = ability[i-1];
    }
    
    for(int j = 2; j <= k; j++) { // 选j个人
        for(int i = j; i <= n; i++) { // 当前选第i个人
            // 前一个人只能在[i-d, i-1]范围内
            int start = max(j-1, i-d); // 至少需要j-1个人
            for(int l = start; l < i; l++) {
                // 考虑三种情况:正×正,负×负,正×负
                dp_max[i][j] = max(dp_max[i][j], max(dp_max[l][j-1] * ability[i-1], dp_min[l][j-1] * ability[i-1]));
                dp_min[i][j] = min(dp_min[i][j], min(dp_max[l][j-1] * ability[i-1], dp_min[l][j-1] * ability[i-1]));
            }
        }
    }
    
    // 找出选k个人时的最大乘积
    long long result = LLONG_MIN;
    for(int i = k; i <= n; i++) {
        result = max(result, dp_max[i][k]);
    }
    return result;
}

int main() {
    int n, k, d;
    cin >> n;
    vector<int> ability(n);
    for(int i = 0; i < n; i++) cin >> ability[i];
    cin >> k >> d;
    
    cout << maxProduct(n, ability, k, d) << endl;
    return 0;
}

五、总结

本解法通过动态规划将复杂问题分解为子问题,利用状态转移优化时间复杂度。关键在于处理正负数的乘积逻辑,确保最终结果正确。代码结构清晰,注释明确,适用于同类最大乘积问题的参考与学习。

来源:牛客网题解


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
微信客服

购课补贴
联系客服咨询优惠详情

帮助反馈 APP下载

慕课网APP
您的移动学习伙伴

公众号

扫描二维码
关注慕课网微信公众号

举报

0/150
提交
取消