为了账号安全,请及时绑定邮箱和手机立即绑定

python进阶

廖雪峰 移动开发工程师
难度中级
时长 3小时33分
学习人数
综合评分9.17
573人评价 查看评价
9.6 内容实用
9.0 简洁易懂
8.9 逻辑清晰
  • 一定要用 super(Student, self).__init__(name, gender) 去初始化父类

  • 如果一个属性由双下划线开头(__),该属性就无法被外部访问

  • def format_name(s):

        return s[0].upper()+s[1:].lower()


    print map(format_name, ['adam', 'LISA', 'barT'])


  • Python 3.x已经改进了整数的除法运算,“/”除将得到浮点数,“//”除才仍是整数:

    >>> 10 / 3
    3.3333333333333335
    >>> 10 // 3
    3

    要在Python 2.7中引入3.x的除法规则,导入__future__的division:

    >>> from __future__ import division
    >>> print 10 / 3
    3.3333333333333335

    当新版本的一个特性与旧版本不兼容时,该特性将会在旧版本中添加到__future__中,以便旧的代码能在旧版本中测试新特性。


  • 利用ImportError错误,我们经常在Python中动态导入模块:

    try:
        from cStringIO import StringIO
    except ImportError:
        from StringIO import StringIO

    上述代码先尝试从cStringIO导入,如果失败了(比如cStringIO没有被安装),再尝试从StringIO导入。这样,如果cStringIO模块存在,则我们将获得更快的运行速度,如果cStringIO不存在,则顶多代码运行速度会变慢,但不会影响代码的正常执行。

    try 的作用是捕获错误,并在捕获到指定错误时执行 except 语句。



  • 如果遇到名字冲突怎么办?比如math模块有一个log函数,logging模块也有一个log函数,如果同时使用,如何解决名字冲突?

    如果使用import导入模块名,由于必须通过模块名引用函数名,因此不存在冲突:

    import math, logging
    print math.log(10)   # 调用的是math的log函数logging.log(10, 'something')   # 调用的是logging的log函数

    如果使用 from...import 导入 log 函数,势必引起冲突。这时,可以给函数起个“别名”来避免冲突:

    from math import log
    from logging import log as logger   # logging的log现在变成了loggerprint log(10)   # 调用的是math的loglogger(10, 'import from logging')   # 调用的是logging的log


  • 关键字lambda 表示匿名函数,冒号前面的 x 表示函数参数。

    匿名函数有个限制,就是只能有一个表达式,不写return,返回值就是该表达式的结果。

    使用匿名函数,可以不必定义函数名,直接创建一个函数对象,很多时候可以简化代码:

    >>> sorted([1, 3, 9, 5, 0], lambda x,y: -cmp(x,y))
    [9, 5, 3, 1, 0]

    返回函数的时候,也可以返回匿名函数:

    >>> myabs = lambda x: -x if x < 0 else x 
    >>> myabs(-1)
    1
    >>> myabs(1)
    1


  • 像这种内层函数引用了外层函数的变量(参数也算变量),然后返回内层函数的情况,称为闭包(Closure)。

    闭包的特点是返回的函数还引用了外层函数的局部变量,所以,要正确使用闭包,就要确保引用的局部变量在函数返回后不能变。举例如下:

    # 希望一次返回3个函数,分别计算1x1,2x2,3x3:def count():
        fs = []
        for i in range(1, 4):
            def f():
                 return i*i
            fs.append(f)
        return fs
    
    f1, f2, f3 = count()

    你可能认为调用f1(),f2()和f3()结果应该是1,4,9,但实际结果全部都是 9(请自己动手验证)。

    原因就是当count()函数返回了3个函数时,这3个函数所引用的变量 i 的值已经变成了3。由于f1、f2、f3并没有被调用,所以,此时他们并未计算 i*i,当 f1 被调用时:

    >>> f1()
    9     # 因为f1现在才计算i*i,但现在i的值已经变为3

    因此,返回函数不要引用任何循环变量,或者后续会发生变化的变量。


  • python之导入模块

    要使用一个模块,我们必须首先导入该模块。Python使用import语句导入一个模块。例如,导入系统自带的模块 math:

    import math

    你可以认为math就是一个指向已导入模块的变量,通过该变量,我们可以访问math模块中所定义的所有公开的函数、变量和类:

    >>> math.pow(2, 0.5) # pow是函数 1.4142135623730951 >>> math.pi # pi是变量 3.141592653589793

    如果我们只希望导入用到的math模块的某几个函数,而不是所有函数,可以用下面的语句:

    from math import pow, sin, log

    这样,可以直接引用 pow, sin, log 这3个函数,但math的其他函数没有导入进来:

    >>> pow(2, 10) 1024.0 >>> sin(3.14) 0.0015926529164868282

    如果遇到名字冲突怎么办?比如math模块有一个log函数,logging模块也有一个log函数,如果同时使用,如何解决名字冲突?

    如果使用import导入模块名,由于必须通过模块名引用函数名,因此不存在冲突:

    import math, logging print math.log(10)   # 调用的是math的log函数 logging.log(10, 'something')   # 调用的是logging的log函数

    如果使用 from...import 导入 log 函数,势必引起冲突。这时,可以给函数起个“别名”来避免冲突:

    from math import log from logging import log as logger   # logging的log现在变成了logger print log(10)   # 调用的是math的log logger(10, 'import from logging')   # 调用的是logging的log


  • 请注意区分返回函数和返回值:

    def myabs():
        return abs   # 返回函数def myabs2(x):
        return abs(x)   # 返回函数调用的结果,返回值是一个数值

    返回函数可以把一些计算延迟执行。例如,如果定义一个普通的求和函数:

    def calc_sum(lst):
        return sum(lst)

    调用calc_sum()函数时,将立刻计算并得到结果:

    >>> calc_sum([1, 2, 3, 4])
    10

    但是,如果返回一个函数,就可以“延迟计算”:

    def calc_sum(lst):
        def lazy_sum():
            return sum(lst)
        return lazy_sum

    # 调用calc_sum()并没有计算出结果,而是返回函数:

    >>> f = calc_sum([1, 2, 3, 4])
    >>> f
    <function lazy_sum at 0x1037bfaa0>

    # 对返回的函数进行调用时,才计算出结果:

    >>> f()
    10

    由于可以返回函数,我们在后续代码里就可以决定到底要不要调用该函数。


  •  sorted()也是一个高阶函数,它可以接收一个比较函数来实现自定义排序,比较函数的定义是,传入两个待比较的元素 x, y,如果 x 应该排在 y 的前面,返回 -1,如果 x 应该排在 y 的后面,返回 1。如果 x 和 y 相等,返回 0。

    因此,如果我们要实现倒序排序,只需要编写一个reversed_cmp函数:

    def reversed_cmp(x, y):
        if x > y:
            return -1
        if x < y:
            return 1
        return 0

    这样,调用 sorted() 并传入 reversed_cmp 就可以实现倒序排序:

    >>> sorted([36, 5, 12, 9, 21], reversed_cmp)
    [36, 21, 12, 9, 5]

    sorted()也可以对字符串进行排序,字符串默认按照ASCII大小来比较:

    >>> sorted(['bob', 'about', 'Zoo', 'Credit'])
    ['Credit', 'Zoo', 'about', 'bob']

    'Zoo'排在'about'之前是因为'Z'的ASCII码比'a'小。


  • 1.__init__初始化示例  即对象创建时必须传入适当参数,当创建实例(对象)时,__init__()方法被自动调用,我们就能在此为每个实例都统一加上以下属性: class Person(object): def __init__(self, name, gender, birth): # 这里的self就是(该类的)具体对象 self.name = name self.gender = gender self.birth = birth xiaoming = Person('Xiao Ming', 'Male', '1991-1-1') xiaohong = Person('Xiao Hong', 'Female', '1992-2-2') print xiaoming.name # 输出 'Xiao Ming' print xiaohong.birth # 输出 '1992-2-2’ 任务:请定义Person类的__init__方法,除了接受 name、gender 和 birth 外,还可接受任意关键字参数,并把他们都作为属性赋值给实例。  定义关键字参数,使用 **kw;(**kw是关键字参数,用于字典 )  除了可以直接使用self.name = ‘xxx’设置一个属性外,还可以通过 setattr(self, ‘name’, ‘xxx’) 设置属性,解答见下: class Person(object): def __init__(self, name, gender, birth, **kw): self.name = name self.gender = gender self.birth = birth for k, v in kw.iteritems(): setattr(self, k, v) xiaoming = Person('Xiao Ming', 'Male', '1990-1-1', job='Student') print xiaoming.name print xiaoming.job 解释器内部会将**kw拆分成对应的dict.  setattr()方法接受3个参数
  • python中偏函数

    当一个函数有很多参数时,调用者就需要提供多个参数。如果减少参数个数,就可以简化调用者的负担。

    比如,int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:

    >>> int('12345') 12345

    但int()函数还提供额外的base参数,默认值为10。如果传入base参数,就可以做 N 进制的转换:

    >>> int('12345', base=8) 5349 >>> int('12345', 16) 74565

    假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去:

    def int2(x, base=2):     return int(x, base)

    这样,我们转换二进制就非常方便了:

    >>> int2('1000000') 64 >>> int2('1010101') 85

    functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:

    >>> import functools >>> int2 = functools.partial(int, base=2) >>> int2('1000000') 64 >>> int2('1010101') 85

    所以,functools.partial可以把一个参数多的函数变成一个参数少的新函数,少的参数需要在创建时指定默认值,这样,新函数调用的难度就降低了。


  • python中编写带参数decorator

    考察上一节的 @log 装饰器:

    def log(f):     def fn(x):         print 'call ' + f.__name__ + '()...'         return f(x)     return fn

    发现对于被装饰的函数,log打印的语句是不能变的(除了函数名)。

    如果有的函数非常重要,希望打印出'[INFO] call xxx()...',有的函数不太重要,希望打印出'[DEBUG] call xxx()...',这时,log函数本身就需要传入'INFO'或'DEBUG'这样的参数,类似这样:

    @log('DEBUG') def my_func():     pass

    把上面的定义翻译成高阶函数的调用,就是:

    my_func = log('DEBUG')(my_func)

    上面的语句看上去还是比较绕,再展开一下:

    log_decorator = log('DEBUG') my_func = log_decorator(my_func)

    上面的语句又相当于:

    log_decorator = log('DEBUG') @log_decorator def my_func():     pass

    所以,带参数的log函数首先返回一个decorator函数,再让这个decorator函数接收my_func并返回新函数:

    def log(prefix):     def log_decorator(f):         def wrapper(*args, **kw):             print '[%s] %s()...' % (prefix, f.__name__)             return f(*args, **kw)         return wrapper     return log_decorator @log('DEBUG') def test():     pass print test()

    执行结果:

    [DEBUG] test()... None

    对于这种3层嵌套的decorator定义,你可以先把它拆开:

    # 标准decorator: def log_decorator(f):     def wrapper(*args, **kw):         print '[%s] %s()...' % (prefix, f.__name__)         return f(*args, **kw)     return wrapper return log_decorator # 返回decorator: def log(prefix):     return log_decorator(f)

    拆开以后会发现,调用会失败,因为在3层嵌套的decorator定义中,最内层的wrapper引用了最外层的参数prefix,所以,把一个闭包拆成普通的函数调用会比较困难。不支持闭包的编程语言要实现同样的功能就需要更多的代码


  • python中编写无参数decorator

    Python的 decorator 本质上就是一个高阶函数,它接收一个函数作为参数,然后,返回一个新函数。

    使用 decorator 用Python提供的 @ 语法,这样可以避免手动编写 f = decorate(f) 这样的代码。

    考察一个@log的定义:

    def log(f):     def fn(x):         print 'call ' + f.__name__ + '()...'         return f(x)     return fn

    对于阶乘函数,@log工作得很好:

    @log def factorial(n):     return reduce(lambda x,y: x*y, range(1, n+1)) print factorial(10)

    结果:

    call factorial()... 3628800

    但是,对于参数不是一个的函数,调用将报错:

    @log def add(x, y):     return x + y print add(1, 2)

    结果:

    Traceback (most recent call last):   File "test.py", line 15, in <module>     print add(1,2) TypeError: fn() takes exactly 1 argument (2 given)

    因为 add() 函数需要传入两个参数,但是 @log 写死了只含一个参数的返回函数。

    要让 @log 自适应任何参数定义的函数,可以利用Python的 *args 和 **kw,保证任意个数的参数总是能正常调用:

    def log(f):     def fn(*args, **kw):         print 'call ' + f.__name__ + '()...'         return f(*args, **kw)     return fn

    现在,对于任意函数,@log 都能正常工作。


  • decorrator装饰器

    <!--此处有图片-->

    <!--此处有图片-->

  • python中匿名函数

    高阶函数可以接收函数做参数,有些时候,我们不需要显式地定义函数,直接传入匿名函数更方便。

    在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算 f(x)=x时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:

    >>> map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]) [1, 4, 9, 16, 25, 36, 49, 64, 81]

    通过对比可以看出,匿名函数 lambda x: x * x 实际上就是:

    def f(x):     return x * x

    关键字lambda 表示匿名函数,冒号前面的 x 表示函数参数。

    匿名函数有个限制,就是只能有一个表达式,不写return,返回值就是该表达式的结果。

    使用匿名函数,可以不必定义函数名,直接创建一个函数对象,很多时候可以简化代码:

    >>> sorted([1, 3, 9, 5, 0], lambda x,y: -cmp(x,y)) [9, 5, 3, 1, 0]

    返回函数的时候,也可以返回匿名函数:

    >>> myabs = lambda x: -x if x < 0 else x  >>> myabs(-1) 1 >>> myabs(1) 1


  • python中闭包

    在函数内部定义的函数和外部定义的函数是一样的,只是他们无法被外部访问:

    def g():     print 'g()...' def f():     print 'f()...'     return g

    将 g 的定义移入函数 f 内部,防止其他代码调用 g:

    def f():     print 'f()...'     def g():         print 'g()...'     return g

    但是,考察上一小节定义的 calc_sum 函数:

    def calc_sum(lst):     def lazy_sum():         return sum(lst)     return lazy_sum

    注意: 发现没法把 lazy_sum 移到 calc_sum 的外部,因为它引用了 calc_sum 的参数 lst。

    像这种内层函数引用了外层函数的变量(参数也算变量),然后返回内层函数的情况,称为闭包(Closure)。

    闭包的特点是返回的函数还引用了外层函数的局部变量,所以,要正确使用闭包,就要确保引用的局部变量在函数返回后不能变。举例如下:

    # 希望一次返回3个函数,分别计算1x1,2x2,3x3: def count():     fs = []     for i in range(1, 4):         def f():              return i*i         fs.append(f)     return fs f1, f2, f3 = count()

    你可能认为调用f1(),f2()和f3()结果应该是1,4,9,但实际结果全部都是 9(请自己动手验证)。

    原因就是当count()函数返回了3个函数时,这3个函数所引用的变量 i 的值已经变成了3。由于f1、f2、f3并没有被调用,所以,此时他们并未计算 i*i,当 f1 被调用时:

    >>> f1() 9     # 因为f1现在才计算i*i,但现在i的值已经变为3

    因此,返回函数不要引用任何循环变量,或者后续会发生变化的变量。


  • python中返回函数

    Python的函数不但可以返回int、str、list、dict等数据类型,还可以返回函数!

    例如,定义一个函数 f(),我们让它返回一个函数 g,可以这样写:

    def f():     print 'call f()...'     # 定义函数g:     def g():         print 'call g()...'     # 返回函数g:     return g

    仔细观察上面的函数定义,我们在函数 f 内部又定义了一个函数 g。由于函数 g 也是一个对象,函数名 g 就是指向函数 g 的变量,所以,最外层函数 f 可以返回变量 g,也就是函数 g 本身。

    调用函数 f,我们会得到 f 返回的一个函数:

    >>> x = f()   # 调用f() call f()... >>> x   # 变量x是f()返回的函数: <function g at 0x1037bf320> >>> x()   # x指向函数,因此可以调用 call g()...   # 调用x()就是执行g()函数定义的代码

    请注意区分返回函数和返回值:

    def myabs():     return abs   # 返回函数 def myabs2(x):     return abs(x)   # 返回函数调用的结果,返回值是一个数值

    返回函数可以把一些计算延迟执行。例如,如果定义一个普通的求和函数:

    def calc_sum(lst):     return sum(lst)

    调用calc_sum()函数时,将立刻计算并得到结果:

    >>> calc_sum([1, 2, 3, 4]) 10

    但是,如果返回一个函数,就可以“延迟计算”:

    def calc_sum(lst):     def lazy_sum():         return sum(lst)     return lazy_sum

    # 调用calc_sum()并没有计算出结果,而是返回函数:

    >>> f = calc_sum([1, 2, 3, 4]) >>> f <function lazy_sum at 0x1037bfaa0>

    # 对返回的函数进行调用时,才计算出结果:

    >>> f() 10

    由于可以返回函数,我们在后续代码里就可以决定到底要不要调用该函数。


  • python中自定义排序函数

    Python内置的 sorted()函数可对list进行排序:

    >>>sorted([36, 5, 12, 9, 21])
    [5, 9, 12, 21, 36]

    但 sorted()也是一个高阶函数,它可以接收一个比较函数来实现自定义排序,比较函数的定义是,传入两个待比较的元素 x, y,如果 x 应该排在 y 的前面,返回 -1,如果 x 应该排在 y 的后面,返回 1。如果 x 和 y 相等,返回 0。

    因此,如果我们要实现倒序排序,只需要编写一个reversed_cmp函数:

    def reversed_cmp(x, y):     if x > y:         return -1     if x < y:         return 1     return 0

    这样,调用 sorted() 并传入 reversed_cmp 就可以实现倒序排序:

    >>> sorted([36, 5, 12, 9, 21], reversed_cmp) [36, 21, 12, 9, 5]

    sorted()也可以对字符串进行排序,字符串默认按照ASCII大小来比较:

    >>> sorted(['bob', 'about', 'Zoo', 'Credit']) ['Credit', 'Zoo', 'about', 'bob']

    'Zoo'排在'about'之前是因为'Z'的ASCII码比'a'小。


  • python中filter()函数

    filter()函数是 Python 内置的另一个有用的高阶函数,filter()函数接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,返回 True或 False,filter()根据判断结果自动过滤掉不符合条件的元素,返回由符合条件元素组成的新list。

    例如,要从一个list [1, 4, 6, 7, 9, 12, 17]中删除偶数,保留奇数,首先,要编写一个判断奇数的函数:

    def is_odd(x):     return x % 2 == 1

    然后,利用filter()过滤掉偶数:

    filter(is_odd, [1, 4, 6, 7, 9, 12, 17])

    结果:[1, 7, 9, 17]

    利用filter(),可以完成很多有用的功能,例如,删除 None 或者空字符串:

    def is_not_empty(s):     return s and len(s.strip()) > 0 filter(is_not_empty, ['test', None, '', 'str', '  ', 'END'])

    结果:['test', 'str', 'END']

    注意: s.strip(rm) 删除 s 字符串中开头、结尾处的 rm 序列的字符。

    当rm为空时,默认删除空白符(包括'\n', '\r', '\t', ' '),如下:

    a = '     123' a.strip()

    结果: '123'

    a='\t\t123\r\n' a.strip()

    结果:'123'


  • python中reduce()函数

    reduce()函数也是Python内置的一个高阶函数。reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值。

    例如,编写一个f函数,接收x和y,返回x和y的和:

    def f(x, y):     return x + y

    调用 reduce(f, [1, 3, 5, 7, 9])时,reduce函数将做如下计算:

    先计算头两个元素:f(1, 3),结果为4; 再把结果和第3个元素计算:f(4, 5),结果为9; 再把结果和第4个元素计算:f(9, 7),结果为16; 再把结果和第5个元素计算:f(16, 9),结果为25; 由于没有更多的元素了,计算结束,返回结果25。

    上述计算实际上是对 list 的所有元素求和。虽然Python内置了求和函数sum(),但是,利用reduce()求和也很简单。

    reduce()还可以接收第3个可选参数,作为计算的初始值。如果把初始值设为100,计算:

    reduce(f, [1, 3, 5, 7, 9], 100)

    结果将变为125,因为第一轮计算是:

    计算初始值和第一个元素:f(100, 1),结果为101。


  • python中map()函数

    map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回。

    例如,对于list [1, 2, 3, 4, 5, 6, 7, 8, 9]

    如果希望把list的每个元素都作平方,就可以用map()函数。

    因此,我们只需要传入函数f(x)=x*x,就可以利用map()函数完成这个计算:

    def f(x):
        return x*x
    print map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])

    输出结果:

    [1, 4, 9, 10, 25, 36, 49, 64, 81]

    注意:map()函数不改变原有的 list,而是返回一个新的 list。

    利用map()函数,可以把一个 list 转换为另一个 list,只需要传入转换函数。

    由于list包含的元素可以是任何类型,因此,map() 不仅仅可以处理只包含数值的 list,事实上它可以处理包含任意类型的 list,只要传入的函数f可以处理这种数据类型。


首页上一页1234567下一页尾页

举报

0/150
提交
取消
课程须知
本课程是Python入门的后续课程 1、掌握Python编程的基础知识 2、掌握Python函数的编写 3、对面向对象编程有所了解更佳
老师告诉你能学到什么?
1、什么是函数式编程 2、Python的函数式编程特点 3、Python的模块 4、Python面向对象编程 5、Python强大的定制类

微信扫码,参与3人拼团

意见反馈 帮助中心 APP下载
官方微信
友情提示:

您好,此课程属于迁移课程,您已购买该课程,无需重复购买,感谢您对慕课网的支持!