为了账号安全,请及时绑定邮箱和手机立即绑定

机器学习的分类?

/ 猿问

机器学习的分类?

牧羊人nacy 2019-02-20 19:15:12

机器学习的分类


查看完整描述

2 回答

?
幕布斯6054654

根据如何处理经验、环境或者任何我们称之为输入的数据,算法分为不同种类。机器学习人工智能课本通常先考虑算法可以适应的学习方式。
这里只讨论几个主要的学习风格或学习模型,并且有几个基本的例子。这种分类或者组织的方法很好,因为它迫使你去思考输入数据的角色和模型准备的过程,然后选择一个最适合你的问题的算法,从而得到最佳的结果。
监督学习:输入数据被称为训练数据,并且有已知的结果或被标记。比如说一封邮件是否是垃圾邮件,或者说一段时间内的股价。模型做出预测,如果错了就会被修正,这个过程一直持续到对于训练数据它能够达到一定的正确标准。问题例子包括分类和回归问题,算法例子包括逻辑回归和反向神经网络。
无监督学习:输入数据没有被标记,也没有确定的结果。模型对数据的结构和数值进行归纳。问题例子包括Association rule learning和聚类问题,算法例子包括 Apriori 算法和K-均值算法。
半监督学习:输入数据是被标记的和不被标记的数据的混合,有一些预测问题但是模型也必须学习数据的结构和组成。问题例子包括分类和回归问题,算法例子基本上是无监督学习算法的延伸。
增强学习:输入数据可以刺激模型并且使模型做出反应。反馈不仅从监督学习的学习过程中得到,还从环境中的奖励或惩罚中得到。问题例子是机器人控制,算法例子包括Q-learning以及Temporal difference learning。
当整合数据模拟商业决策时,大多数会用到监督学习和无监督学习的方法。当下一个热门话题是半监督学习,比如图像分类问题,这中问题中有一个大的数据库,但是只有一小部分图片做了标记。增强学习多半还是用在机器人控制和其他控制系统的开发上。

查看完整回答
反对 2019-03-01

添加回答

回复

举报

0/150
提交
取消
意见反馈 帮助中心 APP下载
官方微信