/ 猿问

# 线性回归与In R中的群

2019-06-21 15:24:35

## 3 回答

largeQ

``` library(lme4)
d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
year=rep(1:10, 2),
response=c(rnorm(10), rnorm(10)))

xyplot(response ~ year, groups=state, data=d, type='l')

fits <- lmList(response ~ year | state, data=d)
fits#------------Call: lmList(formula = response ~ year | state, data = d)Coefficients:
(Intercept)        year
CA -1.34420990  0.17139963NY  0.00196176 -0.01852429Degrees of freedom: 20 total; 16 residual
Residual standard error: 0.8201316```

```d <- data.frame(
state = rep(c('NY', 'CA'), 10),
year = rep(1:10, 2),
response= rnorm(20))library(plyr)# Break up d by state, then fit the specified model to each piece and# return a listmodels
<- dlply(d, "state", function(df)
lm(response ~ year, data = df))# Apply coef to each model and return a data frameldply(models, coef)# Print the summary of each
modell_ply(models, summary, .print = TRUE)```

library(dplyr)

d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),

year=rep(1:10, 2),

response=c(rnorm(10), rnorm(10)))

fitted_models = d %>% group_by(state) %>% do(model = lm(response ~ year, data = .))

# Source: local data frame [2 x 2]

# Groups: <by row>

#

#    state   model

#   (fctr)   (chr)

# 1     CA <S3:lm>

# 2     NY <S3:lm>

fitted_models\$model

# [[1]]

# Call:

# lm(formula = response ~ year, data = .)

# Coefficients:

# (Intercept)         year

#    -0.06354      0.02677

#

#

# [[2]]

# Call:

# lm(formula = response ~ year, data = .)

# Coefficients:

# (Intercept)         year

#    -0.35136      0.09385

library(broom)

fitted_models %>% tidy(model)

# Source: local data frame [4 x 6]

# Groups: state [2]

#    state        term    estimate  std.error  statistic   p.value

#   (fctr)       (chr)       (dbl)      (dbl)      (dbl)     (dbl)

# 1     CA (Intercept) -0.06354035 0.83863054 -0.0757668 0.9414651

# 2     CA        year  0.02677048 0.13515755  0.1980687 0.8479318

# 3     NY (Intercept) -0.35135766 0.60100314 -0.5846187 0.5749166

# 4     NY        year  0.09385309 0.09686043  0.9689519 0.3609470

fitted_models %>% glance(model)

# Source: local data frame [2 x 12]

# Groups: state [2]

#    state   r.squared adj.r.squared     sigma statistic   p.value    df

#   (fctr)       (dbl)         (dbl)     (dbl)     (dbl)     (dbl) (int)

# 1     CA 0.004879969  -0.119510035 1.2276294 0.0392312 0.8479318     2

# 2     NY 0.105032068  -0.006838924 0.8797785 0.9388678 0.3609470     2

# Variables not shown: logLik (dbl), AIC (dbl), BIC (dbl), deviance (dbl),

#   df.residual (int)

fitted_models %>% augment(model)

# Source: local data frame [20 x 10]

# Groups: state [2]

#     state   response  year      .fitted   .se.fit     .resid      .hat

#    (fctr)      (dbl) (int)        (dbl)     (dbl)      (dbl)     (dbl)

# 1      CA  0.4547765     1 -0.036769875 0.7215439  0.4915464 0.3454545

# 2      CA  0.1217003     2 -0.009999399 0.6119518  0.1316997 0.2484848

# 3      CA -0.6153836     3  0.016771076 0.5146646 -0.6321546 0.1757576

# 4      CA -0.9978060     4  0.043541551 0.4379605 -1.0413476 0.1272727

# 5      CA  2.1385614     5  0.070312027 0.3940486  2.0682494 0.1030303

# 6      CA -0.3924598     6  0.097082502 0.3940486 -0.4895423 0.1030303

# 7      CA -0.5918738     7  0.123852977 0.4379605 -0.7157268 0.1272727

# 8      CA  0.4671346     8  0.150623453 0.5146646  0.3165112 0.1757576

# 9      CA -1.4958726     9  0.177393928 0.6119518 -1.6732666 0.2484848

# 10     CA  1.7481956    10  0.204164404 0.7215439  1.5440312 0.3454545

# 11     NY -0.6285230     1 -0.257504572 0.5170932 -0.3710185 0.3454545

# 12     NY  1.0566099     2 -0.163651479 0.4385542  1.2202614 0.2484848

# 13     NY -0.5274693     3 -0.069798386 0.3688335 -0.4576709 0.1757576

# 14     NY  0.6097983     4  0.024054706 0.3138637  0.5857436 0.1272727

# 15     NY -1.5511940     5  0.117907799 0.2823942 -1.6691018 0.1030303

# 16     NY  0.7440243     6  0.211760892 0.2823942  0.5322634 0.1030303

# 17     NY  0.1054719     7  0.305613984 0.3138637 -0.2001421 0.1272727

# 18     NY  0.7513057     8  0.399467077 0.3688335  0.3518387 0.1757576

# 19     NY -0.1271655     9  0.493320170 0.4385542 -0.6204857 0.2484848

# 20     NY  1.2154852    10  0.587173262 0.5170932  0.6283119 0.3454545

# Variables not shown: .sigma (dbl), .cooksd (dbl), .std.resid (dbl)

• 3 回答
• 0 关注
• 197 浏览

0/150