我要做的是从现有的训练模型中获取一些权重和偏差,然后在我的自定义操作(模型或图形)中使用它们。我可以使用以下方法还原模型:# Create contextwith tf.Graph().as_default(), tf.Session() as sess: # Create model with tf.variable_scope('train'): train_model = MyModel(some_args)然后获取张量:latest_ckpt = tf.train.latest_checkpoint(path)if latest_ckpt: saver.restore(sess, latest_ckpt)weight = tf.get_default_graph().get_tensor_by_name("example:0")我的问题是,如果要weight在另一个上下文(模型或图形)中使用它,如何安全地将其值复制到新图形中,例如:with self.test_session(use_gpu=True, graph=ops.Graph()) as sess: with vs.variable_scope("test", initializer=initializer): # How can I make it possible? w = tf.get_variable('name', initializer=weight)欢迎任何帮助,非常感谢。感谢@Sorin的启发,我找到了一种简单干净的方法:z = graph.get_tensor_by_name('prefix/NN/W1:0')with tf.Session(graph=graph) as sess: z_value = sess.run(z)with tf.Graph().as_default() as new_graph, tf.Session(graph=new_graph) as sess: w = tf.get_variable('w', initializer=z_value)
添加回答
举报
0/150
提交
取消
