2 回答

TA贡献1804条经验 获得超7个赞
使用pandas:
import pandas as pd
raw_df = pd.DataFrame(data)
df = raw_df.rename(columns=raw_df.iloc[0]).drop(0)
df
输出:
incident_num date_time day stno stdir1 StreetName ... call_type disposition beat priority lat long
1 P17060024503 6/14/2017 21:54 4 10 14TH ... 1151 O 521 2 32.7054489 -117.1518696
2 P17030051227 3/29/2017 22:24 4 10 14TH ... 1016 A 521 2 32.7054489 -117.1518696
3 P17060004814 6/3/2017 18:04 7 10 14TH ... 1016 A 521 2 32.7054489 -117.1518696
4 P17030029336 3/17/2017 10:57 6 10 14TH ... 1151 OT 521 2 32.7054489 -117.1518696
5 P17030005412 3/3/2017 23:45 6 10 15TH ... 911P CAN 521 2 32.7057215 -117.1503498
6 P17020016091 2/10/2017 8:23 6 10 15TH ... AU2 W 521 2 32.7057215 -117.1503498
7 P17040017368 4/11/2017 4:57 3 10 15TH ... 5150 CAN 521 2 32.7057215 -117.1503498
8 P17030048050 3/28/2017 6:30 3 10 15TH ... 1146 K 521 32.7057215 -117.1503498
9 P17060037341 6/22/2017 10:19 5 10 15TH ... 242 K 521 1 32.7057215 -117.1503498
10 P17060008467 6/5/2017 19:27 2 10 15TH ... 5150 K 521 2 32.7057215 -117.1503498
您可以运行的查询示例:
>>> df['call_type'].value_counts()
5150 2
1016 2
1151 2
242 1
911P 1
AU2 1
1146 1

TA贡献1846条经验 获得超7个赞
迭代 json 文件并将所需字段存储在 assosiatve 数组中。您可以对其进行操作。
如果数据具有固定的列和结构,您可以将其存储在 MySql 等数据库中,并且您可以通过简单的查询轻松执行所需的操作。
添加回答
举报