我正在尝试创建一个 sklearn 管道,该管道将首先提取文本中的平均字长,然后使用StandardScaler.定制变压器class AverageWordLengthExtractor(BaseEstimator, TransformerMixin): def __init__(self): pass def average_word_length(self, text): return np.mean([len(word) for word in text.split( )]) def fit(self, x, y=None): return self def transform(self, x , y=None): return pd.DataFrame(pd.Series(x).apply(self.average_word_length))我的目标是实现这一目标。X 是一个带有文本值的熊猫系列。这行得通。 extractor=AverageWordLengthExtractor() print(extractor.transform(X[:10])) sc=StandardScaler() print(sc.fit_transform(extractor.transform(X[:10])))我为此创建的管道是。pipeline = Pipeline([('text_length', AverageWordLengthExtractor(), 'scale', StandardScaler())])但pipeline.fit_transform()产生以下错误。Traceback (most recent call last): File "custom_transformer.py", line 48, in <module> main() File "custom_transformer.py", line 43, in main 'scale', StandardScaler())]) File "/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py", line 114, in __init__ self._validate_steps() File "/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py", line 146, in _validate_steps names, estimators = zip(*self.steps)ValueError: too many values to unpack (expected 2)
添加回答
举报
0/150
提交
取消