1 回答

TA贡献1864条经验 获得超6个赞
你需要收集独特的价值
每个唯一值的总和数量
为他们计算分数
下次将数据作为文本而不是图像发布。
我的代码与描述:
=^..^=
import pandas as pd
from io import StringIO
data = StringIO("""
ord_date crt_code del_date slb_qty val1
01/01/2019 125 10/01/2019 2 38
01/01/2019 125 10/01/2019 4 27
01/01/2019 125 10/01/2019 12 35
01/01/2019 128 10/01/2019 2 45
01/01/2019 128 10/01/2019 4 21
01/01/2019 128 10/01/2019 12 23
01/01/2019 128 10/01/2019 14 24
02/01/2019 125 10/01/2019 2 37
02/01/2019 125 10/01/2019 12 30
02/01/2019 125 10/01/2019 4 29
02/01/2019 128 10/01/2019 14 22
02/01/2019 128 10/01/2019 4 26
02/01/2019 128 10/01/2019 12 21
02/01/2019 128 10/01/2019 2 29
""")
# load data
df = pd.read_csv(data, sep=" ")
# get unique values
df_unique = df.groupby(['ord_date', 'crt_code', 'del_date']).size().reset_index()
# drop last column
df_unique = df_unique.drop([0], axis=1)
# sum quantity values
slb_qty_2_12 = []
slb_qty_4_14 = []
for index, row in df_unique.iterrows():
# select row range from raw data
selected_rows = df[(df['ord_date'] == row['ord_date']) & (df['crt_code'] == row['crt_code']) & (df['del_date'] == row['del_date'])]
# find 2 and 12 qty
rows_2_12 = selected_rows[(selected_rows['slb_qty'] == 2) | (selected_rows['slb_qty'] == 12)]
# sum values
values_sum = rows_2_12['val1'].sum()
# collect data
slb_qty_2_12.append(values_sum)
# find 4 and 14 qty
rows_4_14 = selected_rows[(selected_rows['slb_qty'] == 4) | (selected_rows['slb_qty'] == 14)]
# sum values
values_sum = rows_4_14['val1'].sum()
# collect data
slb_qty_4_14.append(values_sum)
# add calculated values to data frame
df_unique['slb_qty_2_12'] = slb_qty_2_12
df_unique['slb_qty_4_14'] = slb_qty_4_14
# calculate score
score = []
for index, row in df_unique.iterrows():
if row['slb_qty_4_14'] >= 80:
score.append(300)
elif 80 > row['slb_qty_4_14'] >= 60:
score.append(150)
elif row['slb_qty_2_12'] >= 80:
score.append(200)
elif 80 > row['slb_qty_2_12'] >= 60:
score.append(100)
else:
score.append(0)
# drop used columns
df_unique = df_unique.drop(['slb_qty_2_12', 'slb_qty_4_14'], axis=1)
# add score
df_unique['Score'] = score
输出:
ord_date crt_code del_date Score
0 01/01/2019 125 10/01/2019 100
1 01/01/2019 128 10/01/2019 100
2 02/01/2019 125 10/01/2019 100
3 02/01/2019 128 10/01/2019 0
添加回答
举报