2 回答
TA贡献1784条经验 获得超8个赞
目前尚不清楚您所说的“总和”错误或与 Excel 不同是什么意思。如果你想要你计算的总数的百分比,你可以这样做(它会更容易,即,不需要设置索引,如果你已经阅读了日期作为索引的 csv):
df = df.set_index('quarter')
df.div(df.Total, axis=0).applymap(lambda x: f'{x * 100:.2f}%')

TA贡献1783条经验 获得超5个赞
要获得百分比,
df.set_index('quarter').apply(lambda x: (x / x.sum())*100, axis=1)
输出
AUSTRAL CANADA N ZEAL MEXICO NICARAG URUGUAY C RICA BRAZIL HONDURA IRELAND
quarter
2014-01-01 25.440018 25.682501 26.799560 13.356812 4.645008 2.502126 1.185601 0.000000 0.388373 0.000000
2014-04-01 34.489028 20.473965 27.223601 10.739338 3.545756 2.637722 0.645318 0.000000 0.245270 0.000000
2014-07-01 41.388462 19.418827 17.413776 13.046643 4.365293 3.062794 1.000460 0.000000 0.303746 0.000000
2014-10-01 45.921175 19.947340 12.453399 10.987784 6.659666 2.472346 1.220976 0.000000 0.337314 0.000000
2015-01-01 34.779864 18.914200 23.802183 12.789158 4.607413 3.750432 1.113557 0.000000 0.242027 0.001166
2015-04-01 40.115581 15.889617 24.620569 12.233570 2.614697 3.684628 0.669135 0.000000 0.140994 0.031210
2015-07-01 44.545033 19.933480 16.419047 13.207045 1.903940 3.151725 0.706372 0.000000 0.000000 0.133357
2015-10-01 36.019231 25.727244 12.442655 16.527229 4.201449 3.803939 0.998293 0.000000 0.000000 0.279961
2016-01-01 29.991387 22.293687 24.963800 15.665886 3.364758 2.537703 0.964889 0.000000 0.000000 0.217890
2016-04-01 28.368131 22.124064 26.707744 16.011170 2.974021 2.736466 0.902486 0.000000 0.008214 0.167704
2016-07-01 25.368992 28.843584 17.562638 18.601159 4.361163 4.197427 0.900461 0.001082 0.000000 0.163494
2016-10-01 19.623932 30.095599 11.720699 27.695783 5.386881 3.950341 1.098037 0.262948 0.000000 0.165780
2017-01-01 20.799706 22.871970 23.475104 23.519770 4.726189 2.564349 1.105563 0.777981 0.000000 0.159366
2017-04-01 20.961391 24.807151 22.372555 20.141108 4.201882 3.848614 0.717434 2.847786 0.000000 0.102079
2017-07-01 26.326774 27.124571 16.796464 20.485338 4.180663 3.973982 0.748360 0.050250 0.122305 0.191292
2017-10-01 26.996354 29.432880 11.569669 22.702213 5.579304 2.623607 0.794317 0.000000 0.156468 0.145188
2018-01-01 20.148823 25.861165 24.566617 19.748647 5.864245 2.507594 0.946862 0.000000 0.218396 0.137650
2018-04-01 22.281189 26.300865 24.879217 18.074004 4.368848 3.058836 0.757353 0.000000 0.196459 0.083229
2018-07-01 24.996713 28.873588 16.749910 19.016680 5.816461 3.499820 0.757308 0.000000 0.140196 0.149324
2018-10-01 25.305780 31.831372 9.842619 22.351502 6.039240 3.353802 0.824540 0.000000 0.236478 0.214668
在折线图中绘制
>>> df.plot(kind='line')
<matplotlib.axes._subplots.AxesSubplot object at 0x7f418a3710b8>
>>> from matplotlib import pyplot as plt
>>> plt.show()

添加回答
举报
