4 回答

TA贡献1856条经验 获得超11个赞
这是代码:
l = [0, 0, 0, 1, 2, 2, 2, 2, 0, 0]
for (i, ll) in enumerate(l):
if i != 0 and ll == l[i-1] and i<len(l)-1 and ll == l[i+1]:
continue
print(i+1, ll)
它产生你想要的东西。您没有指定输入数据的格式,所以我假设它们在列表中。条件ll == l[i-1]和ll == l[i+1]是跳过重复值的关键。

TA贡献1744条经验 获得超4个赞
没有快速的函数调用来做你需要的。以下是一种方式
import pandas as pd
df = pd.DataFrame({'interval':[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'value':[0, 0, 0, 1, 2, 2, 2, 2, 0, 0]}) # example dataframe
df['group'] = df['value'].ne(df['value'].shift()).cumsum() # column that increments every time the value changes
df['key'] = 1 # create column of ones
df['key'] = df.groupby('group')['key'].transform('cumsum') # get the cumulative sum
df['key'] = df.groupby('group')['key'].transform(lambda x: x.isin( [x.min(), x.max()])) # check which key is minimum and which is maximum by group
df = df[df['key']==True].drop(columns=['group', 'key']) # keep only relevant cases
df

TA贡献1995条经验 获得超2个赞
您可以对数据框使用 pandas 查询来实现此目的:
import pandas as pd
matrix = [[1,0, 0],
[2, 0, 0],
[3, 0, 0],
[4, 1, 1],
[5, 2, 2],
[6, 2, 0],
[7, 2, 0],
[8, 2, 2],
[9, 0, 0],
[10,0, 0]]
df = pd.DataFrame(matrix, columns=list('abc'))
print(df.query("c != 0"))
添加回答
举报