2 回答

TA贡献1799条经验 获得超9个赞
如果你想有一个自定义的预处理层,实际上你不需要使用PreprocessingLayer
. 您可以简单地继承Layer
以最简单的预处理层Rescaling为例,它在tf.keras.layers.experimental.preprocessing.Rescaling
命名空间下。但是,如果您检查实际实现,它只是子Layer
类 class Source Code Link Here但有@keras_export('keras.layers.experimental.preprocessing.Rescaling')
@keras_export('keras.layers.experimental.preprocessing.Rescaling')
class Rescaling(Layer):
"""Multiply inputs by `scale` and adds `offset`.
For instance:
1. To rescale an input in the `[0, 255]` range
to be in the `[0, 1]` range, you would pass `scale=1./255`.
2. To rescale an input in the `[0, 255]` range to be in the `[-1, 1]` range,
you would pass `scale=1./127.5, offset=-1`.
The rescaling is applied both during training and inference.
Input shape:
Arbitrary.
Output shape:
Same as input.
Arguments:
scale: Float, the scale to apply to the inputs.
offset: Float, the offset to apply to the inputs.
name: A string, the name of the layer.
"""
def __init__(self, scale, offset=0., name=None, **kwargs):
self.scale = scale
self.offset = offset
super(Rescaling, self).__init__(name=name, **kwargs)
def call(self, inputs):
dtype = self._compute_dtype
scale = math_ops.cast(self.scale, dtype)
offset = math_ops.cast(self.offset, dtype)
return math_ops.cast(inputs, dtype) * scale + offset
def compute_output_shape(self, input_shape):
return input_shape
def get_config(self):
config = {
'scale': self.scale,
'offset': self.offset,
}
base_config = super(Rescaling, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
所以它证明Rescaling预处理只是另一个普通层。
主要部分是def call(self, inputs)函数。您可以创建任何复杂的逻辑来预处理您的逻辑inputs然后返回。
可以在此处找到有关自定义层的更简单的文档
简而言之,您可以按层进行预处理,可以通过 Lambda 进行简单操作,也可以通过子类化 Layer 来实现您的目标。

TA贡献1818条经验 获得超8个赞
我认为最好和更干净的解决方案是使用一个简单的 Lambda 层,您可以在其中包装预处理函数
这是一个虚拟的工作示例
import numpy as np
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
X = np.random.randint(0,256, (200,32,32,3))
y = np.random.randint(0,3, 200)
inp = Input((32,32,3))
x = Lambda(lambda x: x/255)(inp)
x = Conv2D(8, 3, activation='relu')(x)
x = Flatten()(x)
out = Dense(3, activation='softmax')(x)
m = Model(inp, out)
m.compile(loss='sparse_categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
history = m.fit(X, y, epochs=10)
添加回答
举报