2 回答

TA贡献1853条经验 获得超6个赞
首先添加每个组内的序列号:
df['Order'] = df.groupby('Gender').cumcount()
然后排序:
df.sort_values('Order')
它给你:
Age Gender Country Order
0 10 Male US 0
3 40 Female Canada 0
1 20 Male UK 1
4 50 Female US 1
2 30 Male China 2
6 70 Female China 2
5 60 Male UK 3
7 80 Female Brazil 3
如果您想随机播放,请在一开始就这样做,例如df = df.sample(frac=1)
,请参阅:Shuffle DataFrame rows

TA贡献1795条经验 获得超7个赞
使用 a 创建两个新的数据帧,'Sort_Column'并使数据帧为df_male偶数值和数据帧为df_female奇数值。然后,使用pd.concat将它们重新组合在一起并.sort_values()在'Sort_Column'.
df = pd.DataFrame({'Age': [10, 20, 30, 40, 50, 60, 70, 80],
'Gender': ["Male", "Male", "Male", "Female", "Female", "Male", "Female", "Female"],
'Country': ["US", "UK", "China", "Canada", "US", "UK", "China", "Brazil"]})
df['Sort_Column'] = 0
df_male = df.loc[df['Gender'] == 'Male'].reset_index(drop=True)
df_male['Sort_Column'] = df_male['Sort_Column'] + df_male.index*2
df_female = df1.loc[df1['Gender'] == 'Female'].reset_index(drop=True)
df_female['Sort_Column'] = df_female['Sort_Column'] + df_female.index*2 + 1
df_sorted=pd.concat([df_male, df_female]).sort_values('Sort_Column').drop('Sort_Column', axis=1).reset_index(drop=True)
df_sorted
输出:
Age Gender Country
0 10 Male US
1 40 Female Canada
2 20 Male UK
3 50 Female US
4 30 Male China
5 70 Female China
6 60 Male UK
7 80 Female Brazil
添加回答
举报