我在实验中得到了数据: import matplotlib.pyplot as plt x = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50] y_NaOH = [94.2, 146.2, 222.2, 276.2, 336.2, 372.2, 428.2, 542.2, 576.2, 684.2, 766.2, 848.2, 904.2, 1042.2, 1136.2] y_NaHCO3 = [232.0, 308.0, 322.0, 374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0, 1048.0, 1138.0, 1232.0] y_BaOH2 = [493.1, 533.1, 549.1, 607.1, 665.1, 731.1, 797.1, 867.1, 971.1, 1007.1, 1091.1, 1221.1, 1311.1, 1371.1, 1497.1, ] plt.plot(x, y_NaOH) plt.plot(x, y_NaHCO3) plt.plot(x, y_BaOH2) plt.show()但是,我在标记异常值时遇到了困难,这是我尝试过的: import matplotlib.pyplot as plt import statistics x = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50] y_NaOH = [94.2, 146.2, 222.2, 276.2, 336.2, 372.2, 428.2, 542.2, 576.2, 684.2, 766.2, 848.2, 904.2, 1042.2, 1136.2] y_NaHCO3 = [232.0, 308.0, 322.0, 374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0, 1048.0, 1138.0, 1232.0] y_BaOH2 = [493.1, 533.1, 549.1, 607.1, 665.1, 731.1, 797.1, 867.1, 971.1, 1007.1, 1091.1, 1221.1, 1311.1, 1371.1, 1497.1, ] # plt.plot(x, y_NaOH) # plt.plot(x, y_NaHCO3) # plt.plot(x, y_BaOH2) # plt.show() def detect_outlier(data_1): threshold = 1 mean_1 = statistics.mean(data_1) std_1 = statistics.stdev(data_1) result_dataset = [y for y in data_1 if abs((y - mean_1)/std_1)<=threshold ] return result_dataset if __name__=="__main__": dataset = y_NaHCO3 result_dataset = detect_outlier(dataset) print(result_dataset) # [374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0]错误的是,这种方法总是过滤掉我的数据的边缘值,实际上我试图删除不适合曲线的点。另外,我可以手动观察曲线的形状并标记异常值,但这确实花费了很多时间。我将非常感谢您的帮助。
查看完整描述